Graph basics, 1

Definition

An *undirected graph* consists of a set of vertices V and a set of edges E between vertices.

Graph basics, 2

Definition

An *directed graph* consists of a set of vertices V and a set of (directed) edges E between vertices. (So, $E \subseteq \{ (u,v) \mid u, v \in V \land u \neq v \}$.)

Note: In this course, we shall only work with *finite* graphs.

Graph basics, 3

Adjacency Matrix Representation

Let $V = \{1, \ldots, n\}$ and $a_{ij} = \text{true} \iff (i,j) \in E$.

Testing if $(i,j) \in E$: $O(1)$ time

Finding the vertices adjacent to i: $O(n)$ time
Adjacency Matrix Representation

Let $V = \{1, \ldots, n\}$ and $a_{ij} = \text{true} \iff (i,j) \in E$.

```
1 2 3 4
1 F T F T
2 F F F T
3 T T F F
4 F F T F
```

- Testing if $(i,j) \in E$: $O(1)$ time
- Finding the vertices adjacent to i: $O(n)$ time

Adjacency List Representation

Let $V = \{1, \ldots, n\}$ and $L_i = \text{a list of vertices adjacent to } i$.

```
1 [2, 5]
2 [1, 3, 5]
3 [2, 4]
4 [3, 5, 6]
5 [1, 2, 6]
6 [4]
```

- Testing if $(i,j) \in E$: $O(n)$ time
- Finding the vertices adjacent to i: $O(1)$ time

Depth-First Exploration, 1

```
procedure explore(G, v)
    // Input: a graph $G = (V, E)$ and $v \in V$
    // Output: for all vertices $u$, reachable from $v$: $\text{visited}[u]$ is set to true
    visited[v] ← true
    previsit(v)
    for each $u$ adjacent to $v$ do
        if not visited[u] then explore(G, u)
    postvisit(v)
```

- 3, 5, and 6 are adjacent to 4
- 3 is adjacent to 4, but neither 1 nor 2 is adjacent to 4.
Depth-First Exploration, 2

Definition

\[u \text{ is visited } \iff \text{explore eventually sets } \text{visited}[u] \leftarrow \text{true}. \]

\[u \text{ is unvisited } \iff \text{explore never sets } \text{visited}[u] \leftarrow \text{true}. \]

Lemma

Suppose initially \(\text{visited}[u] = \text{false} \) for each \(u \in V \). Then explore visits exactly all vertices reachable from \(v \).

Proof:

procedure explore(G, v)
\[\text{visited}[v] \leftarrow \text{true} \]
\[\text{previsit}(v) \]
\[\text{for each } u \text{ adjacent to } v \text{ do} \]
\[\quad \text{if not } \text{visited}[u] \text{ then explore}(G, u) \]
\[\text{postvisit}(v) \]

Claim 1: If \(u \) is not reachable from \(v \), then \(u \) is unvisited. (Why?)

More...

Depth-First Exploration of the Entire Graph

procedure dfs(G)
\[// G = (V, E) \]
\[\text{for each } v \in V \text{ do} \]
\[\quad \text{visited}[v] \leftarrow \text{false} \]
\[\text{for each } v \in V \text{ do} \]
\[\quad \text{if not } \text{visited}[v] \text{ then explore}(G, v) \]
\[\text{procedure} \text{ explore}(G, v) \]
\[\quad \text{visited}[v] \leftarrow \text{true} \]
\[\quad \text{previsit}(v) \]
\[\quad \text{for each } u \text{ adjacent to } v \text{ do} \]
\[\quad \quad \text{if not } \text{visited}[u] \text{ then explore}(G, u) \]
\[\quad \text{postvisit}(v) \]

Run time analysis:

- Each \(v \) is explore’d exactly once. (Why?)
- In the undirected case, each edge is explore’d down twice. (Why?)
- In the directed case, each edge is explore’d down once. (Why?)
- Under the adjacency list representation, this all takes \(\Theta(|V| + |E|) \) time. (Why?)

Depth-First Exploration of an Undirected Graph

Definition

- A **tree edge** is an edge the exploration moves down.
- A **back edge** is an edge the exploration fails to move down.
- A **DFS forest** is the forest made up of the tree edges.

Figure from DPV
Connected Components in an Undirected Graph

Procedure dfs(G) // G = (V, E)
- for each v ∈ V do visited[v] ← false; cc[v] ← 0
- count ← 1
- for each v ∈ V do
 - if not visited[v] then explore(G, v); count ← count + 1

Procedure explore(G, v)
- visited[v] ← true
- previsit(v)
- for each u adjacent to v do
 - if not visited[u] then explore(G, u)
- postvisit(v)

Procedure previsit(v)
- cc[v] ← count

Previsit and postvisit orderings

Procedure previsit(v)
- pre[v] ← clock
- clock ← clock + 1

Procedure postvisit(v)
- post[v] ← clock
- clock ← clock + 1

Lemma
For any two distinct vertices u and v, either
(a) [pre[u], post[u]] ∩ [pre[v], post[v]] = ∅ or
(b) [pre[u], post[u]] ⊂ [pre[v], post[v]] = ∅ or
(c) [pre[u], post[u]] ⊃ [pre[v], post[v]] = ∅.

Depth-first search in directed graphs, 1

Types of edges

(a) **Tree edge**: part of the DFS forest
(b) **Forward edge**: lead to nonchild descendant in the DFS tree.
(c) **Back edge**: lead to an ancestor in the DFS tree.
(d) **Cross edge**: None of the above. They lead to a vertex that has been completely explored.

Pre/post ordering for (u, v)

- \[
\begin{array}{cccc}
 u & v & v & u \\
 \end{array}
\]
 - Tree/Forward edges
- \[
\begin{array}{cccc}
 v & u & u & v \\
 \end{array}
\]
 - Back edges
- \[
\begin{array}{cccc}
 u & u & v & v \\
 \end{array}
\]
 - Cross edges
Testing for a Cycle

Proposition

A directed graph G has a cycle \iff any depth-first search of G finds a back edge.

- **Claim 1:** If there is a back edge, there is a cycle.
 Easy
- **Claim 2:** If there is a cycle, a DFS finds a back edge.

 Proof:
 - Suppose G has a cycle.
 - Suppose u is the first vertex of this cycle a particular DFS finds.
 - Then the DFS visits all the vertices reachable from u.
 - In the course of this it must find a back edge.

Topological Sorting, 1

Definition

(a) A dag is a directed, acyclic (i.e., no cycles) graph.
(b) Suppose $G = (V, E)$ is a dag. For each $u, v \in V$, write $u \leq_G v$ iff there is a path from u to v in G. (Note: $(u \leq_G v \& v \leq_G u) \Rightarrow u = v$.)
(c) A topological sort of a dag G is ordering of V: v_1, \ldots, v_n such that $v_i \leq_G v_j \iff i \leq j$.

Every dag has a topological sort, but how to find it?

Proposition

If (u, v) is an edge in a dag, then \(\text{post}[u] > \text{post}[v] \).
(Why?)

Corollary

Every dag has at least one source and at least one sink.
(Why?)

source \equiv no edges in sink \equiv no edges out

Topological Sorting, 2

procedure dfs(G)
// $G = (V, E)$
 for each $v \in V$ do visited[v] \leftarrow false; pre[v] \leftarrow 0; post[v] \leftarrow 0;
 clock \leftarrow 0; topsort \leftarrow emptylist
 for each $v \in V$ do
 if not visited[v] then explore(G, v);

procedure explore(G, v)
 visited[v] \leftarrow true
 previsit(v)
 for each u adjacent to v do
 if not visited[u] then explore(G, u)
 postvisit(v)

procedure previsit(v)
 pre[v] \leftarrow clock; clock \leftarrow clock + 1

procedure postvisit(v)
 post[v] \leftarrow clock; clock \leftarrow clock + 1; \text{add} \ v \ \text{to the front of} \ \text{topsort}

Next time: strongly connected components

Strongly Connected Components

Below $G = (V, E)$ is a directed graph.

Definition

We say that $u, v \in V$ are connected (written: $u \sim_G v$) \iff there is a G-path from u to v and a G-path from v to u.

Lemma

\sim_G is an equivalence relation.
I.e., $u \sim_G u$ and $u \sim_G v \iff v \sim_G u$ and $(u \sim_G v \& v \sim_G w) \Rightarrow u \sim_G w$.

Definition

A \sim_G equivalence class is called a strongly connected component of G.

Definition

$G/\sim_G = (\tilde{V}, \tilde{E})$, where $\tilde{V} = G$’s connect components and $\tilde{E} = \{ (C, C') : (\exists u \in C, v \in C')[(u, v) \in E] \}$.

Royer (EECS)
CIS 675 Slides
September 24, 2009
17 / 28
Finding Connected Components, An Example

Strongly Connected Components, An Example

A
B
C
D
E
F
G
H
I
J
K
L

Finding Connected Components, 1

Property 1
Start explore at vertex u.
Then explore stops after visiting exactly the vertices reachable from u.

Corollary
Started in a sink connected component, explore will visit exactly that component.

Q1: How to find vertex in a sink component? Q2: What to do after that?
Observation: Finding a vertex in a source component is easy.

Property 2
Do a DFS of G. Let u be the vertex with largest $post[u]$.
Then u is in the source component.

Finding Connected Components, 1

Property 1
Start explore at vertex u.
Then explore stops after visiting exactly the vertices reachable from u.

Corollary
Started in a sink connected component, explore will visit exactly that component.

Q1: How to find vertex in a sink component? Q2: What to do after that?
Observation: Finding a vertex in a source component is easy.

Property 2
Do a DFS of G. Let u be the vertex with largest $post[u]$.
Then u is in the source component.

(Why? …)
Finding Connected Components, 2

Property 2
Do a DFS of G. Let u be the vertex with largest $\text{post}[u]$.
Then u is in the source component.

Property 3
Suppose C and C' are SCC's and there is an edge from a vertex in C to a vertex in C'. Then: \[
\max(\{\text{post}[v] : v \in C\}) > \max(\{\text{post}[v] : v \in C'\}).
\]

Proof Outline.
CASE: The DFS visits C before C'.
Then the DFS visits all of C and C' before backing out of C.
CASE: The DFS visits C' before C.
Then the DFS must visit all of C' before arriving at C.

So we can find the source SCC, what about the sink?

Finding Connected Components, 3

Definition
$G^R = (V, \{(v, u) : (u, v) \in E\})$. \[\Rightarrow \text{in } G \Rightarrow \text{in } G^R\]

Observation: A source SSC in G^R is a sink SSC in G.

Finding Connected Components, 4

Run time

Finding Connected Components, 5
Other Applications of DFS

- **biconnected components:**
 Suppose G is undirected.
 $u \approx_G v \iff u = v$ or u and v are on a G-cycle
 The biconnected components of G are the \approx_G-equivalence classes

- Etc. See the exercises for Chapter 3.

Other Graph Traversals

- **Breadth First Search**
 Visit v.
 Visit all vertices distance 1 from v
 Visit all vertices distance 2 from v
 :
 This is a queue-based search — DFS is stack based.

- **Game tree search**
 The tree is too big, so you build it as you explore it.
 You have a heuristic rating function on positions
 You next explore the best-rated position not yet visited.
 This is a priority queue based search.

 Next: Paths in graphs.