Backtracking = exhaustive search + pruning

Example: SAT via Backtracking

Let \(\phi = (w \lor x \lor y \lor z) \land (w \lor \overline{x}) \land (x \lor \overline{y}) \land (y \lor \overline{z}) \land (z \lor \overline{w}) \land (\overline{w} \lor \overline{z}) \).

So the problem you want to solve is NP-Complete. Now what?

- ✗ Give up.
- ✗ Burn cycles and try to solve it exactly.
- ✗ Try the first thing that comes into your head and hope it produces correct answers and is fast enough to get by.
- ✓ Open a different tool box. (Chapter 9 of DPV.)
Backtracking: The general scheme

First we need a fast test for subproblems such that

\[
\text{test}(P) = \begin{cases}
\text{failure,} & \text{if subproblem } P \text{ has no solution;} \\
\text{success,} & \text{if a solution to } P \text{ is found;} \\
\text{uncertainty,} & \text{otherwise.}
\end{cases}
\]

Then:

Start with some problem \(P_0 \)

\(S \leftarrow \{ P_0 \} \) // the set of active subproblems

while \(S \neq \emptyset \) do

Choose a \(P \in S \); \(S \leftarrow S - \{ P \} \)

Expand \(P \) into subproblems \(P_1, \ldots, P_k \)

for \(i \leftarrow 1 \) to \(k \) do

\[
\text{case test}(P_i) \text{ of}
\]

success: announce solution and halt

failure: discard \(P_i \)

uncertainty: add \(P_i \) to \(S \)

Announce that there is no solution.

Branch-and-Bound

- \(\text{B&B} \) = the backtracking idea for optimization problems
- We consider minimization problems.
- First we need a fast way to compute lower bounds for the cost.
- Then:

Start with some problem \(P_0 \)

\(S \leftarrow \{ P_0 \} \) // the set of active subproblems

\(\text{bestSoFar} \leftarrow \infty \)

while \(S \neq \emptyset \) do

Choose a \(P \in S \); \(S \leftarrow S - \{ P \} \)

Expand \(P \) into subproblems \(P_1, \ldots, P_k \)

for \(i \leftarrow 1 \) to \(k \) do

\[
\text{if } (P_i \text{ is a complete solution) then update } \text{bestSoFar}
\]

\[
\text{else if } (\text{lowerbound}(P_i) < \text{bestSoFar}) \text{ then add } P_i \text{ to } S
\]

return \(\text{bestSoFar} \)

Branch-and-Bound Applied to TSP, 1

- \(G = (V, E) \) each \(e \in E \) with length \(d_e > 0 \).
- Fix an \(a \in V \).
- Partial solution: \([a, S, b] \) = a path from \(a \) to \(b \), \(S \) = the verts in this path
- Extension: \([a, S \cup \{ x \}, x] \) where \(x \in (V - S) \) and \((b, x) \in E \).
- \(\text{lowerbound}([a, S, b]) \) = the sum of:
 - the cheapest edge from \(a \) to \(V - S \).
 - the cheapest edge from \(b \) to \(V - S \).
 - the cost of a minimum spanning tree of \(V - S \).

?? Why is this a lower bound on the cost?

Branch-and-Bound Applied to TSP, 2

- 28 partial solutions examined.
- \(7! = 5,040 \) partial solutions in a brute-force search.
Approximation Algorithms

- Instead of seeking an optimum solution, try “close to optimum”
- The question is how close is good enough.
- $\text{opt}(I)$ = the value of an optimum solution for instance I.
- **Convention**: Assume $\text{opt}(I)$ is always a positive integer.
- **Convention**: Let us focus on minimization problems.

The approximation ratio for A is

$$\alpha_A = \max_I \frac{A(I)}{\text{opt}(I)}$$

For maximization problems, take:

$$\alpha_A = \max_I \frac{\text{opt}(I)}{A(I)}$$

Recall from Chapter 5: Set Cover, 1

Suppose B is a set and $S_1, \ldots, S_m \subseteq B$.

Definition

(a) A set cover of B is a $\{S'_1, \ldots, S'_k\} \subseteq \{S_1, \ldots, S_m\}$ with $B \subseteq \bigcup_{i=1}^k S'_i$.

(b) A minimal set cover of B is a set cover of B using as few of the S_i-sets as possible.

The Set Cover Problem (SCP)

Given: B and S_1, \ldots, S_m as above.

Find: A minimal set cover of B.

Example

For $B = \{1, \ldots, 14\}$ and

- $S_1 = \{1, 2\}$
- $S_2 = \{3, 4, 5, 6\}$
- $S_3 = \{7, 8, 9, 10, 11, 12, 13, 14\}$
- $S_4 = \{1, 3, 5, 7, 9, 11\}$
- $S_5 = \{2, 4, 6, 8, 10, 12, 14\}$

the solution to SCP is $\{S_4, S_5\}$.

Recall from Chapter 5: Set Cover, 2

A Greedy Approximation to the Set Cover Problem

```plaintext
// Input: B and S_1, \ldots, S_m \subseteq B as above.
// Output: A set cover of B which is close to minimal.
C ← ∅
while (some element of B is not yet covered) do
    Pick the S_i with the largest number of uncovered B-elements
    C ← C \cup \{S_i\}
return C
```

Example

For $B = \{1, \ldots, 14\}$ and

- $S_1 = \{1, 2\}$
- $S_2 = \{3, 4, 5, 6\}$
- $S_3 = \{7, 8, 9, 10, 11, 12, 13, 14\}$
- $S_4 = \{1, 3, 5, 7, 9, 11\}$
- $S_5 = \{2, 4, 6, 8, 10, 12, 14\}$

The algorithm returns $\{S_1, S_2, S_3\}$.
A Greedy Approx. to SCP

// Input: B and S₁, . . . , Sₘ ⊆ B
// Output: A near min. set cover
C ← ∅

while (all of B is not covered) do
 Pick the Sᵢ with the largest number of uncovered B-elms
 C ← C ∪ {Sᵢ}
return C

Claim
Suppose B contains n elements and the min. cover has k sets.
Then the greedy algorithm will use at most k ln n sets.

Proof: Let
n₀ = the number of uncovered elms after t-many while loop iterations of the

So n₀ = n.

after iteration t:

Claim
Suppose B contains n elements and the min. cover has k sets.
Then the greedy algorithm will use at most k ln n sets.

Proof: Let
nₜ = the number of uncovered elms after t-many while loop iterations of the
A Greedy Approx. to SCP

// Input: B and $S_1, \ldots, S_m \subseteq B$
// Output: A near min. set cover
$C \leftarrow \emptyset$

while (all of B is not covered) do
 Pick the S_i with the largest number of uncovered B-elms
 $C \leftarrow C \cup \{ S_i \}$
return C

Claim
Suppose B contains n elements and the min. cover has k sets.
Then the greedy algorithm will use at most $k \ln n$ sets.

Proof: Let

$n_t = \text{the number of uncovered elms after } t \text{-many while loop iterations of the}$

So $n_0 = n$. After iteration t:
- there are n_t elms left.
- k many sets cover them
- So there must be some set with at least n_t/k many elements.

\[
0 \leq n_t - \frac{n_t}{k} = n_t \left(1 - \frac{1}{k}\right) = n_0 \left(1 - \frac{1}{k}\right)^t.
\]
Recall from Chapter 5: Set Cover, 4

A Greedy Approx. to SCP

// Input: \(B \) and \(S_1, \ldots, S_m \subseteq B \)
// Output: A near min. set cover
\(C \leftarrow \emptyset \)

while (all of \(B \) is not covered) do
 Pick the \(S_i \) with the largest number of uncovered \(B \)-elms
 \(C \leftarrow C \cup \{ S_i \} \)

return \(C \)

Claim

Suppose \(B \) contains \(n \) elements and the min. cover has \(k \) sets.

Then the greedy algorithm will use at most \(k \ln n \) sets.

Proof: Let \(n_t = \) the number of uncovered elms after \(t \)-many while loop iterations of the

\[n_t = n \left(1 - e^{-t} \right) \]

We know: \(n_{t+1} \leq n \left(1 - \frac{1}{e} \right)^t \).

Fact: \(1 - x \leq e^{-x} \) for all \(x \), with equality iff \(x = 0 \).

Recall from Chapter 5: Set Cover, 5

A Greedy Approx. to SCP

// Input: \(B \) and \(S_1, \ldots, S_m \subseteq B \)
// Output: A near min. set cover
\(C \leftarrow \emptyset \)

while (all of \(B \) is not covered) do
 Pick the \(S_i \) with the largest number of uncovered \(B \)-elms
 \(C \leftarrow C \cup \{ S_i \} \)

return \(C \)

Claim

Suppose \(B \) contains \(n \) elements and the min. cover has \(k \) sets.

Then the greedy algorithm will use at most \(k \ln n \) sets.

Proof: Let \(n_t = \) the number of uncovered elms after \(t \)-many while loop iterations of the

\[n_t = \frac{n}{e^t} \]

We know: \(n_{t+1} \leq n \left(1 - \frac{1}{e} \right)^t \).

Fact: \(1 - x \leq e^{-x} \) for all \(x \), with equality iff \(x = 0 \).

\[a_A = \max \frac{A(I)}{\text{Opt}(I)} = \log n. \]

Approximating Vertex Cover, 1

Vertex Cover (as an optimization problem)

Given: \(G = (V, E) \) an undirected graph
Find: \(S \subseteq V \) such that \(S \) touches every edge.
Goal: Minimize \(|S| \).

- Vertex Cover is a special case of Set Cover.
- Therefore, it can be approximated within a \(O(\log n) \) factor.
- It turns out we can do much better.

Approximating Vertex Cover, 2

Definition

Suppose \(G = (V, E) \) an undirected graph.

(a) A matching is an \(M \subseteq E \) such that any two edges in \(M \) have no endpoints in common.

(b) \(M \) is a maximum matching when for each \(e \in (E - M) \), \(M \cup \{ e \} \) fails to be a matching.

Observations

- Maximal matchings are easy to construct.
 (How?)
- If \(C \) is a vertex cover of \(G \) and \(M \) is a maximum matching, then each \((u, v) \in M \) must have \(u \in C \) or \(v \in C \).
 (the size of a min. vertex cover for \(G \)) \(\geq \) (the size of a max. matching for \(G \))
- If \(M \) is a maximal matching, then \(S = \{ u; u \text{ is an endpoint of an } e \in M \} \) is a vertex cover.
 (Why?)
- \(|S| = 2|M| \geq \) (the size of a min. vertex cover for \(G \)) \(\geq |M| \).
Approximating Vertex Cover, 3

An approximation algorithm for Vertex Cover

\[\text{An approximation algorithm for Vertex Cover} \]

\[\text{input} \ G = (V, E) \]
\[\text{return} \ S = \{ u : u \text{ is an endpoint of an edge in } M \} \]

- By the Observations, the approximation ratio of this algorithm is \(a_A \leq 2 \).
- In fact, you can find examples where the ratio is exactly 2.
- The approximation ratio of this algorithm is \(a_A = 2 \).

Amazing Fact (Dinur and Safra, 2005)

Minimum vertex cover cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree unless P=NP.

Clustering, 1

Definition

A metric on a space \(X \) is a function
\[d : X \times X \to \mathbb{R}^{\geq 0} \]
such that, for all \(x, y, z \in X \):
1. \(d(x, y) \geq 0 \)
2. \(d(x, y) = 0 \iff x = y \)
3. \(d(x, y) = d(y, x) \)
4. \(d(x, y) \leq d(x, z) + d(z, y) \)

\(k \)-Clustering

Input: Points \(X = \{ x_1, \ldots, x_n \} \), metric \(d \), integer \(k > 0 \).
Output: A partition of \(X \) into \(k \) clusters \(C_1, \ldots, C_k \).
Goal: Minimize the diameter of the clusters: \(\max \max_{j} d(x, x') \).

- \(k \)-Clustering is NP-complete.
- \(k \)-Clustering is important in lots of areas, see http://en.wikipedia.org/wiki/K-clustering#Applications

Clustering, 2

Approximation Algorithm for \(k \)-Clustering

\[\text{Approximation Algorithm for } k \text{-Clustering} \]

Pick any point \(p_1 \in X \) to start
for \(i \leftarrow 2 \) to \(k \) do
\[p_i \leftarrow \text{a point in } X \text{ that is farthest away from } p_1, \ldots, p_{i-1} \]
\[// \text{i.e., } p_i \text{ maximizes: } \min \{ d(x, p_i) : j = 1, \ldots, i - 1 \} \]
Create \(k \) clusters: \(C_i = \{ x \in X : p_i \text{ is the closest center} \} \)

Claim

For the above algorithm, \(a_A \leq 2 \).

- Let \(x \) be the point farthest from \(p_1, \ldots, p_k \).
- Let \(r \) be the distance of \(x \) to the nearest \(p_i \).
- Every point must be within \(r \) from its cluster center.
- The diameter of the clusters is \(\leq 2r \).
- The points \(p_1, \ldots, p_k \) and \(x \) are all \(\geq r \) distant from one another.
- Any partition of \(X \) into \(k \) cluster must put two of \(p_1, \ldots, p_k, x \) into the same cluster. (By the PHP)
- These clusters must have diameter \(\geq r \). QED

Traveling Salesman with metric distances, 1

Traveling Salesman Problem

Given: \(n \) vertices and all \(n \cdot (n - 1) / 2 \)-many distances between them.
Find: An ordering of \(1, \ldots, n: \pi(1), \pi(2), \ldots, \pi(n) \) so that the tour's cost
\[d(\pi(1), \pi(2)) + d(\pi(2), \pi(3)) + \cdots + d(\pi(n), \pi(1)) \]
is minimal.

Question: Suppose we require the distances to come from a metric. Does this help make the problem easier? \textbf{Answer: Yes!}

Definition

A metric on a space \(X \) is a function \(d : X \times X \to \mathbb{R}^{\geq 0} \) such that, for all \(x, y, z \in X \):
1. \(d(x, y) \geq 0 \)
2. \(d(x, y) = 0 \iff x = y \)
3. \(d(x, y) = d(y, x) \)
4. \(d(x, y) \leq d(x, z) + d(z, y) \).
Traveling Salesman with metric distances, 2

- Take a TSP path and delete an edge. The result is a spanning tree.
- \(\cdot \cdot \cdot \) (cost of a MST for \(G \))
 \(< \) (cost of a solutions to TSP for \(G \))
- Now take \(T \), a MST for \(G \). Turn \(T \) into a tour that uses each edge twice.
- Let \(c_1, \ldots, c_n \) be the cities on the tour — in the order they are first visited.
- Edit the tour so that from city \(c_i \) the tour shortcuts to city \(c_{i+1} \) and from city \(c_n \) it shortcuts to city \(c_1 \).
- By the triangle inequality, the shortcuts can keep the cost the same or improve it.
- \(\cdot \cdot \cdot \) (cost of a solutions to TSP for \(G \))
 \(< 2 \times \) (cost of a MST for \(G \))
- \(\cdot \cdot \cdot \). We can approximate the metric version of TSP within a factor of 2.

RECALL: Rudrata/Hamiltonian Cycle \(\leq \) TSP

Rudrata/Hamiltonian Cycle Problem
Given: \(G = (V, E) \), an undirected graph.
Find: A simple cycle that visits each vertex of \(G \).

Traveling Salesman Problem (TSP)
Given: \(V', n \) vertices; all \(\frac{n(n-1)}{2} \)-many distances between them; and \(b \), a budget
Find: \(\pi \), an ordering of \(1, \ldots, n \), such that \(\sum_{i=1}^{n} d_{\pi(i), \pi(1+i \mod n)} \leq b \)

Construction
Given \((V, E) \) and \(\text{C} \geq 1 \), define
\[
V' = V
\]
\[
d_{ij} = \begin{cases} 1, & \text{if } (i, j) \in E; \\ 1 + \text{C}, & \text{otherwise.} \end{cases}
\]
\[
b = |V|.
\]
\(\cdot \cdot \cdot \). An approximate solution to TSP would let us solve Rudrata Path in polytime!

Approximating General TSP

- Suppose we had \(\mathcal{A} \), a polytime approximation algorithm for TSP with approximation factor \(\alpha_{\mathcal{A}} \).
- Suppose \(G \) is any instance of Rudrata Path.
- Construct \(I(G, C) \) where \(C = \alpha_{\mathcal{A}} \cdot \text{n} \) and run \(\mathcal{A} \) on it.
- If \(G \) has a Rudrata path, then \(\mathcal{A} \) finds a TSP tour of cost \(\alpha_{\mathcal{A}} \cdot \text{OPT}(I(G, C)) = \alpha_{\mathcal{A}} \cdot \text{n} \).
- If \(G \) has no Rudrata path, then \(\mathcal{A} \) must return a tour of cost \(> \alpha_{\mathcal{A}} \cdot \text{n} \).
- Since \(\mathcal{A} \) is supposed to run in polytime, this means we can decide Rudrata path in polytime!!!!
- \(\cdot \cdot \cdot \). If TSP has a polytime approximation algorithm, \(\text{then } \text{P=NP} \).
- \(\cdot \cdot \cdot \). If \(\text{P} \neq \text{NP} \), \(\text{then } \text{TSP has no polytime approximation algorithm} \).

Approximating Knapsack, 1

Knapsack without repetition
Given:
- A knapsack with capacity \(W \).
- Items \(1, \ldots, n \)
- Item \(i \) has weight \(w_i \) & value \(v_i \).
Find: a set \(M \subseteq \{ 1, \ldots, n \} \)
- \(\sum_{i \in M} w_i \leq W \) and
- \(\sum_{i \in M} v_i \) is maximized.

- By Chapter 6, there is a dynamic programming solution to Knapsack that runs in \(O(n \cdot W) = O(n \cdot 2^{|W|}) \) time.
- There is a similar dynamic programming solution to Knapsack that runs in \(O(n \cdot V) = O(n \cdot 2^{|V|}) \) time, where \(V = \sum_{i=1}^{n} v_i \).
- We use the \(O(n \cdot V) \) version as the basis for an approximation algorithm.
Approximating Knapsack, 2

function ksApprox(⃗v, ⃗w, W, ϵ) // ϵ = an approximation factor
 // Assume each wi ≤ W.
 v_max ← max{ vi : i = 1, ..., n }. // Rescale the values
 for i = 1, ..., n do
 ˜v_i ← ⌊ v_i · n / v_max · ϵ ⌋. // Rescale the values
 Run the dynamic programming algorithm using the ˜v_i values.
 return the resulting choices of items

Runtime Analysis
- Since each ˜v_i ≤ n / ϵ, we have ˜v_1 + ... + ˜v_n ≤ n^2 / ϵ.
- So the DP algorithm runs in O(n^3 / ϵ) time.

Approximation Analysis
Suppose:
- S is an optimal solution to the original problem with total value K^*.
- ˜S is the solution produces for the scaled problem.
Then:
\[\sum_{i \in S} ˜v_i = \sum_{i \in S} \left[\frac{v_i \cdot n}{v_{\text{max}} \cdot \epsilon} \right] \geq \sum_{i \in S} \left(\frac{v_i \cdot n}{v_{\text{max}} \cdot \epsilon} - 1 \right) = K^* \cdot \frac{n}{v_{\text{max}} \cdot \epsilon} - n. \]
So:
\[\sum_{i \in S} v_i \geq \frac{v_{\text{max}} \cdot \epsilon}{n} \sum_{i \in S} ˜v_i \geq \frac{v_{\text{max}} \cdot \epsilon}{n} \left(K^* \cdot \frac{n}{v_{\text{max}} \cdot \epsilon} - n \right) = K^* - v_{\text{max}} \cdot \epsilon \geq K^* (1 - \epsilon). \]

The approximability hierarchy
- No finite approximation ratio is possible.
 E.g., TSP.
- An approximation ratio of about log n is possible.
 E.g., Set Cover.
- A constant approximation ratio is possible, but there are limits to how small this can be.
 E.g., Vertex Cover, k-Clustering, and metric TSP.
 The proofs of these lower limit results are really hard!!!
- A constant approximation ratio is possible, and in fact you can get arbitrarily close to 0.
 E.g., Knapsack.

NOTE: All of the above assumes P ≠ NP. If P=NP, all the problems can be solved exactly in polytime.

Local search heuristics: The general scheme

s ← any initial solution
while there is a solution s' in the neighborhood of s with cost(s') < cost(s) do
 s ← s'
return s

For any application of this scheme to a particular problem, the key question what is a good notion of neighborhood?
Local search heuristics: Traveling Salesman, 1

- Assume we have a complete graph on \(n \) vertices (with a cost assigned to each edge).
- So there are \((n - 1)! \) many tours.
- Two tours differ by at least two edges. \((Why?)\)
- So let us try:
 - Tours \(T_1 \) and \(T_2 \) are neighbors when they differ by two edges.

- With this choice of “neighbor”:
 1. What is the overall running time?
 2. Does this always return an optimal answer?

- Assume we have a complete graph on \(n \) vertices (with a cost assigned to each edge).
- So there are \((n - 1)! \) many tours.
- Two tours differ by at least two edges. \((Why?)\)
- So let us try:
 - Tours \(T_1 \) and \(T_2 \) are neighbors when they differ by two edges.

- With this choice of “neighbor”:
 1. What is the overall running time?
 2. Does this always return an optimal answer?
- Answers:
 1. Hard to say.
 2. Of course not.

Local search heuristics: Traveling Salesman, 2

- Tours \(T_1 \) and \(T_2 \) are neighbors when they differ by two edges.

- With this choice of “neighbor”:
 - What is the overall running time?
 - Each tour has \(O(n^2) \) neighbors, so making the choice is not too expensive.
 - But, the algorithm may well go through exponentially many iterations.

Local search heuristics: Traveling Salesman, 3

- Tours \(T_1 \) and \(T_2 \) are neighbors when they differ by two edges.

- With this choice of “neighbor”:
 - What is the overall running time?
 - Does this always return an optimal answer?
 - The final answer will be locally optimal, but not necessarily optimal.
 - The problem is that this notion of neighbor is too myopic. E.g.,

- If we allow three-edge changes, then:

but then a tour has \(O(n^3) \) neighbors and the choice part of the algorithm slows down.
Local search heuristics: Optima, Local vs. global

Figure 9.8 Local search.

Figure 9.7 shows a specific example of a partitioning problem. Given an undirected graph \(G = (V, E) \), with nonnegative edge weights, and \(\alpha \in (0, 1/2] \).

Goal: Minimize the capacity of the cut \((A, B)\).

Local search heuristics: Optima, Local vs. global

Start with a partition with \(|A| = |B|\).

Neighbors of \((A, B)\) is

\[
\{ (A - \{a\} + \{b\}, B - \{b\} + \{a\}) : a \in A, b \in B \}.
\]

Local search: Graph partitioning, 1

Graph partitioning

Given: An undirected graph \(G = (V, E) \) with nonnegative edge weights, and \(\alpha \in (0, 1/2] \).

Return: A partition of \(V \) into \(A \) and \(B \) with

\[|A|, |B| \geq \alpha |V|\].

Goal: Minimize the capacity of the \((A, B)\)-cut.

Note: The general problem is reducible to the special case of \(\alpha = 1/2 \).

Strategy:
- Start with a partition with \(|A| = |B|\).
- Neighbors of \((A, B)\) are

\[
\{ (A - \{a\} + \{b\}, B - \{b\} + \{a\}) : a \in A, b \in B \}.
\]

Local search: Graph partitioning, 2

- Start with a partition with \(|A| = |B|\).
- Neighbors of \((A, B)\) is

\[
\{ (A - \{a\} + \{b\}, B - \{b\} + \{a\}) : a \in A, b \in B \}.
\]

Local search: Graph partitioning, 3

- The problem with this notion of neighbor is that there are stubborn local minima.
Dealing with local optima: Randomized Restarts

\[L \leftarrow \text{an empty list} \]
\[\text{repeat } k \text{ times} \]
\[s \leftarrow \text{a randomly chosen initial solution} \]
\[\text{while (there is a solution } s' \text{ in the neighborhood of } s \text{ with } cost(s') < cost(s)) \text{ do} \]
\[s \leftarrow s' \]
\[\text{add } s \text{ to } L \]
\[\text{end-repeat} \]
\[\text{return the best solution in } L \]

This can shake free of bad local optima.

Dealing with local optima: Simulated Annealing

\[s \leftarrow \text{a randomly chosen initial solution} \]
\[\text{repeat} \]
\[s' \leftarrow \text{a randomly chosen solution in } s\text{'s neighborhood} \]
\[\Delta \leftarrow cost(s') - cost(s) \]
\[\text{if (} \Delta < 0 \text{) then } s \leftarrow s' \]
\[\text{else with probability } e^{-\Delta/T} \text{ do } s \leftarrow s' \]
\[\text{until we decide we are done} \]

- \(T \equiv \text{temperature} \)
- If \(T \approx 0 \) this is roughly the previous scheme.
- If \(T \) is big, then \(s \) jumps around a lot.
- We vary \(T \), initially large (hot), and gradually small (cooler).