Answers to Quiz 5

Score Distribution Average \(\approx 11.72 \). Median = 11.5. For the histogram, fractional scores were rounded down.

<table>
<thead>
<tr>
<th>Score</th>
<th>Count</th>
<th>Score</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-15</td>
<td>14</td>
<td>12-13</td>
<td>13</td>
</tr>
<tr>
<td>12-13</td>
<td>89</td>
<td>11-11</td>
<td>11</td>
</tr>
<tr>
<td>11-11</td>
<td>101</td>
<td>10-10</td>
<td>10</td>
</tr>
<tr>
<td>10-10</td>
<td>101</td>
<td>9-9</td>
<td>9</td>
</tr>
<tr>
<td>9-9</td>
<td>99</td>
<td>8-8</td>
<td>8</td>
</tr>
<tr>
<td>8-8</td>
<td>88</td>
<td>7-7</td>
<td>7</td>
</tr>
<tr>
<td>7-7</td>
<td>77</td>
<td>6-6</td>
<td>6</td>
</tr>
<tr>
<td>6-6</td>
<td>66</td>
<td>5-5</td>
<td>5</td>
</tr>
<tr>
<td>5-5</td>
<td>55</td>
<td>4-4</td>
<td>4</td>
</tr>
</tbody>
</table>

Problem 1 (9 points) The length of a path is the number of edges in the path. A directed graph \(G = (\{1, \ldots, n\}, E) \) is forward-looking when: (i) every vertex except \(n \) has at least one edge leaving it and (ii) \(i < j \) for each \((i, j) \in E\). For example:

![Diagram of a directed graph](image)

Below, \(G \) will always be forward-looking. We are interested in the problem:

Given: \(G = (\{1, \ldots, n\}, E) \).

Find: the length of longest path from vertex 1 to \(n \).

a. (2 points) Give an example \(G \) on which the following greedy algorithm returns the wrong answer for the length of the longest path from 1 to \(n \). Explain your example. (Hint: Tinker with the example.)

function badFindLongest(\(G \))

\[i \leftarrow 1; \ \ell \leftarrow 0; \ n \leftarrow \text{the number of vertices in } G \]

while \(i \neq n \) do

choose \((i, j) \in E \) with \(j \) is as small as possible

\[i \leftarrow j; \ \ell \leftarrow \ell + 1 \]

return \(\ell \)

b. (2 points) Suppose \(i_1 < i_2 < \cdots < i_k \) (where \(i_k = n \)) are the vertices in a longest path in \(G \) from \(i_1 \) to \(n \). Explain why \(i_2, i_3, \ldots, i_k \) are the vertices in a longest path from \(i_2 \) to \(n \). (Hint: The forward-looking property is important here.)

Problem 2 (7 points) In the game Crawl4Cash there is an \(n \times n \) grid of squares with co-ordinates \((x, y)\) for \(1 \leq x, y \leq n \). You have a pawn that begins at square (1,1) and moves according to the rules:

Rule 1. A pawn on \((x, y)\) with \(x, y < n \), must move to one of \((x+1, y)\), \((x, y+1)\), and \((x+1, y+1)\).

Rule 2. When the pawn is on square \((x, y)\) with \(x = n \) or \(y = n \), the game is over.

When a pawn moves on to \((x, y)\), you receive \(p(x, y) \) many dollars. (You receive no dollars from starting at \((1,1)\).) We want a dynamic programming algorithm that computes the maximum possible winnings for this game.

a. (2 points) What are the subproblems to solve?

b. (2 points) What is the recursive equation for this problem?

c. (3 points) Provide pseudo-code for the algorithm. What is the run-time of your algorithm? Justify this run-time.

An answer for a. C\([x, y]\) = the maximum possible winnings if we start on square \((x, y)\).

Answer for b. For \(x, y < n \), \(C[x, y] = \max \left\{ p(k, \ell) + C[k, \ell] \right\} \) for \((k, \ell) = (x + 1, y), (x, y + 1), (x + 1, y + 1)\).

An answer for c.

function c4c\((p) \)

\[k \leftarrow 1, 2, \ldots, n \] do

\[C[k, n] \leftarrow 0; \ C[n, k] \leftarrow 0 \]

for \(x \leftarrow n - 1, n - 2, \ldots, 1 \) do

\[C[x, y] \leftarrow \max \left\{ \text{as in part (b)} \right\} \]

return \(C[1, 1] \)

The max is constant time and the algorithm fills up each entry in a \(n \times n \) array. So the run time is \(O(n^2) \).

Problem 3 (4 points) Express the following as a linear programming problem, i.e., what are the variables, what is the objective function, what are the constraints? No need to solve the LP problem.

A potter makes cups and plates. It takes her 3 minutes to make a cup and 1.5 minutes to make a plate. Each cup uses 0.75 pounds of clay and each plate uses 1 pound of clay. Each day she has 10 hours (600 minutes) available for making the cups and plates and has a supply of 250 pounds of clay. She makes a profit of $2 on each cup and $1.50 on each plate.

Answer for b.

\[x \leftarrow n - 1, n - 2, \ldots, 1 \] do

\[C[x, y] \leftarrow \max \left\{ \text{as in part (b)} \right\} \]

return \(C[1, 1] \)

The max is constant time and the algorithm fills up each entry in a \(n \times n \) array. So the run time is \(O(n^2) \).
How many cups and how many plates should she make per day in order to maximize her profit?

Answer. Variables: \(c = \) number of cups made per day; \(p = \) number of plates made per day. **Objective function:** Maximize \(2c + 1.5p \). **Constraints:**

\[
0.75c + p \leq 250; 3c + 1.5p \leq 600; \text{ and } c, p \geq 0.
\]

Some Reference Math Facts

a. \(a^m \cdot a^n = a^{m+n} \).

b. \(a^{m \cdot n} = (a^m)^n = (a^n)^m \).

c. \(a^m \cdot b^n = (a \cdot b)^{m \cdot n} \).

d. \(\log_a a^n = n \).

e. \(a^{\log_a n} = n \).

f. \(c \cdot \log_2 a = \log_2 a^c \).

g. \(\log_2 (a \cdot b) = (\log_2 a) + (\log_2 b) \).

h. \((\log_a x) / (\log_a b) = \log_b x \).

i. \(a^{\log_a c} = c \log_a a \).

j. \(\sum_{k=1}^{n} k = \frac{1}{2} \cdot n \cdot (n + 1) \).

k. \(\sum_{k=0}^{n} a^k = \frac{a^{n+1} - 1}{a - 1} \).

l. \(\sum_{k=1}^{\infty} 2^{-k} = 1 \).

m. \(\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \).

n. \(\sum_{k=1}^{\infty} k \cdot 2^{-k} = 2 \).

o. For \(a > 1 \) and \(b, c > 0 \):

\[
\lim_{n \to \infty} n^b a^{-c n} = 0.
\]

p. The Master Recurrence Theorem: Suppose for all \(n > n_0 \), we have \(T(n) = a \cdot T(n/b) + c \cdot n^k \) for \(a, b \geq 1 \) and \(k \geq 0 \), then:

(i) if \(a < b^k \), then \(T(n) \in \Theta(n^k) \);

(ii) if \(a = b^k \), then \(T(n) \in \Theta(n^k \log n) \); and

(iii) if \(a > b^k \), then \(T(n) \in \Theta(n^k \log^k n) \).

Above, we can take \(n/b \) can be taken as either \(\lfloor n/b \rfloor \pm c \) or \(\lceil n/b \rceil \pm c \) for constant \(c \).