(i) **DPV Exercise 8.2.**
Suppose, given a graph G, the procedure $D(G)$ returns true, if G has a Rudrata path, and false, otherwise. Here is how to use D to find a path if it exists.

```plaintext
function RudrataPath(G)  // where (V, E) = G
if not D(G) then return "no path"
E' ← E
for each e ∈ E do
    // See if we still have a Rudrata path
    // when we leave out e
    G' ← (V, E' - {e})
if D(G') then E' ← E' - {e}
return E'
```

The only edges left in E' at the end are the edges making up the Rudrata path—all the other edges could be left out.

(ii) **DPV Exercise 8.3.**
Reduction from SAT: Given an instance of SAT I, let (I, k) be an instance of stingy SAT where $k = \text{the number of variables in SAT instance } I$. We have to show that: I is a yes-instance of SAT if and only if (I, k) is a yes-instance of stingy SAT.

(\Rightarrow) Suppose I has a satisfying assignment S. Then no more than k variables in S can be true, because there are a total of k variables. So S works as a positive solution for (I, k) too.

(\Leftarrow) Suppose (I, k) has a satisfying assignment S with no more than k variables assigned true. Then obviously S is a positive solution to I also.

(iii) **DPV Exercise 8.4.**
(a) An instance of clique-3 consists of a graph G and an integer k. A possible solution consists of a set S of k-many vertices. The checking algorithm $C(G, k, S)$ checks that there really are k vertices in S and each of them have edges going to the other $k - 1$ many vertices in S. All of this clearly can be done in $O(|G| + k)$ time.

(b) The reduction goes the wrong way. To work it has to be from a known NP-complete problem (e.g., clique) to the problem we want to show NP-complete (e.g., clique-3).

(c) Consider ①→②→③. The set $\{2\}$ is a vertex cover of size 1, but $\{1, 3\}$ sure isn’t a clique. So the business about the complement of a vertex cover giving you a clique is bogus.

(d) Given (G, k): If $k > 3$ return “no clique, the vertices can only be adjacent to 3 other vertices!” If $k = 1$, pick a vertex and return it. If $k = 2, 3$, search all k elements subsets of V to find a k-clique. If you find one, return it. If you don’t, return “no k-clique”. Since there are $n \cdot (n - 1) / 2$ subsets of V of size 2 and $n \cdot (n - 1) \cdot (n - 2) / 6$ subsets of V of size 3, the $k = 2, 3$ case are clearly $O(|G|^3)$ time.

(iv) **DPV Exercise 8.10.**
(a) Reduction from Clique: Given a graph G and $g > 0$, construct K_g = the complete graph on g vertices. Then (K_g, G) is an instance of subgraph isomorphism that has a positive answer iff G has a clique subgraph on g vertices.

(c) Reduction from SAT: Given ϕ a conjunctive normal form formula, let $g = \text{the number of clauses in } \phi$. Then (ϕ, g) is an instance of MAX SAT that has a positive solution iff ϕ is satisfiable; and in fact, the same satisfying assignment works for both cases.

(d) Reduction from Clique: Given a graph G and $g > 0$, let $a = g$ and $b = g \cdot (g - 1)/2$. Then (K_b, a, b) is an instance of Dense subgraph that has a positive answer iff G has a clique subgraph on g vertices. (A clique on g vertices always has $g \cdot (g - 1)/2$ edges.)

(v) **DPV Exercise 8.18.**
As the hint suggested, we consider the Bounded Factor Problem:

Given: positive integers n and b.

Question: Is there an $m \in \{2, \ldots, b\}$ such that m evenly divides n?

Here is a checking algorithm for the Bounded Factor Problem.

```plaintext
function C((n, b), m)
if $2 \leq m \leq b$ and $(n \text{ mod } m) = 0$
    then return true
else return false
```

C runs in $O(|b| + |n|^2)$ by the result of Chapter 1. So the Bounded Factor Problem is in NP. So suppose $P=NP$. Then we can solve the Bounded Factor Problem in poly-time, and by using the binary search trick, we can then factor in poly-time. Hence, we can break RSA.