Procedures to build crypto libraries in Minix

In this document, we give step-by-step instructions on how to create a crypto library (libcrypt.a), and compile/link/build/run applications using the newly-built library in Minix.

Step 1: Get the files needed:

1. Download the libcrypt.tar file to your host machine from http://www.cis.syr.edu/~wedu/seed/Labs/Files/libcrypt.tar

2. Upload the libcrypt.tar file to your Minix machine, and put it in the directory of /usr/tmp. You can use ftp to upload the libcrypt.tar file.

3. Login to your Minix machine, and do the following:

 # cd /usr/tmp
 # tar xvf libcrypt.tar

 Now, in this directory (/usr/tmp), there should be two directories: libcrypt, and demo, and one file: README

 In the default directory:
 README: explanation of the contents of this package

 In libcrypt/ directory:
 md5.h: header file for the md5 algorithm
 md5.c: function implementation of the md5 algorithm
 aes.h: header file for the aes algorithm
 aes.c: function implementation of aes algorithm
 sha256.h: header file for the sha256 algorithm
 sha256.c: function implementation of sha256 algorithm
 hmac_md5.c: function implementation of hmac_md5 algorithm
 Makefile: the makefile used to build the library

 In demo/ directory:
 hmac_md5_demo.c: the program to demonstrate the usage of hmac_md5
 aes_demo.c: the program to demonstrate to use of aes algorithm

In the following steps, we assume our current directory is /usr/tmp.

Step 2: Create the crypto library of our own:

We name the crypto library that we will create as libcrypt.a. Follow the procedures below:

1. Copy the header files to the /usr/include directory, using the following command:
 # cp libcrypt/*.h /usr/include

2. Create a sub-directory under /usr/src/lib called crypt:
 # mkdir /usr/src/lib/crypt

3. Copy the function implementation files, as well as the Makefile, to /usr/src/lib/crypt directory:
cp libcrypt/*.c /usr/src/lib/crypt
cp libcrypt/Makefile /usr/src/lib/crypt

4. We need to modify the Makefile in the directory of /usr/src/lib. Follow the instructions below to do the modification:
 a. # cd /usr/src/lib
 b. # vi Makefile // Or you can use “mined”, which is another editor in Minix
 c. In all: part, add
cd crypt && $(MAKE)
d. In install_i86 part, find the appropriate place, add
$(LIB)/libcrypt.a \
e. Still in install_i86 part, find the appropriate place, add
 $(LIB)/libcrypt.a: libcrypt.a
 [TAB key]install -c -o bin $? $@
f. In install_i386 part, find the appropriate place, add
$(LIB386)/libcrypt.a \
g. Still in install_i386 part, find the appropriate place, add
 $(LIB386)/libcrypt.a: libcrypt.a
 [TAB key]install -c -o bin $? $@
h. Save the changes made to the Makefile, and exit

Note:
 - [TAB key] is the white spaces created by pressing the “TAB” key on your keyboard. You need to follow the format exactly in creating / modifying the Makefile, otherwise it will not work.
 - The easiest way to do this is copy & paste, and then modifies the corresponding file names (if you are afraid of making mistakes).
 - More information can be found by checking the file /usr/src/lib/ansi/Makefile

5. Build the library (libcrypt.a) using the following commands:
 # make all
 # make install
 // After this step, you will find that libcrypt.a is in the directory /usr/src/lib

6. We need to modify the descr in the directory of /usr/lib. Follow the instructions below to do the modification:
 a. # cd /usr/lib
 b. # vi descr // Or you can use “mined”, which is another editor in Minix
 c. Find the definition of libs, and at the end of the sentence (after $A/$ARCH/libe.a), add $A/$ARCH/libcrypt.a
d. Save and exit

7. Reboot the system:
 # reboot
Step 3: Compile and link the demo programs

1. Compile the `aes_demo.c` and `hmc_md5_demo.c` programs

   ```bash
   # cd /usr/tmp/demo
   # cc aes_demo.c -o aes_demo
   # cc hmc_md5_demo.c -o hmc_md5_demo
   ```

2. Run the `aes_demo` and `hmac_md5_demo` program:

   ```bash
   # ./aes_demo
   # ./hmc_md5_demo
   ```