Computer Security
A Hands-on Approach

Wenliang Du
Syracuse University
Contents

Preface xiii
About the Author xvii
Acknowledgments xix

I Software Security 1

1 Set-UID Programs 5
1.1 The Need for Privileged Programs 6
1.1.1 The Password Dilemma 6
1.1.2 Different Types of Privileged Programs 7
1.2 The Set-UID Mechanism 8
1.2.1 A Superman Story 8
1.2.2 How It Works 8
1.2.3 An Example of Set-UID Program 9
1.2.4 How to Ensure Its Security 10
1.2.5 The Set-GID Mechanism 10
1.3 What Can Go Wrong: What Happened to Superman 10
1.4 Attack Surfaces of Set-UID Programs 12
1.4.1 User Inputs: Explicit Inputs 12
1.4.2 System Inputs 13
1.4.3 Environment Variables: Hidden Inputs 13
1.4.4 Capability Leaking 14
1.5 Invoking Other Programs 16
1.5.1 Unsafe Approach: Using system() 16
1.5.2 Safe Approach: Using execve() 18
1.5.3 Invoking External Commands in Other Languages 19
1.5.4 Lessons Learned: Principle of Isolation 20
1.6 Principle of Least Privilege 20
1.7 Summary 21

2 Environment Variables and Attacks 23
2.1 Environment Variables 24
2.1.1 How to Access Environment Variables 24
2.1.2 How a Process Gets Its Environment Variables 25
2.1.3 Memory Location for Environment Variables 26
2.1.4 Shell Variables and Environment Variables 27

2.2 Attack Surface 30

2.3 Attacks via Dynamic Linker 32
2.3.1 Static and Dynamic Linking 32
2.3.2 Case Study: LD_PRELOAD and LD_LIBRARY_PATH 34
2.3.3 Case Study: OS X Dynamic Linker 36

2.4 Attack via External Program 37
2.4.1 Two Typical Ways to Invoke External Programs 37
2.4.2 Case Study: the PATH environment variable 37
2.4.3 Reduce Attack Surface 38

2.5 Attack via Library 38
2.5.1 Case Study - Locale in UNIX 39

2.6 Application Code 39
2.6.1 Case Study - Using getenv() in Application Code 40

2.7 Set-UID Approach versus Service Approach 41
2.8 Summary 42

3 Shellshock Attack 43
3.1 Background: Shell Functions) 44
3.2 The Shellshock Vulnerability 46
3.2.1 The Shellshock Bug 46
3.2.2 Mistake in the Bash Source Code 46
3.2.3 Exploiting the Shellshock vulnerability 47
3.3 Shellshock Attack on Set-UID Programs 48
3.4 Shellshock Attack on CGI Programs 49
3.4.1 Experiment Environment Setup 50
3.4.2 How Web Server Invokes CGI Programs 50
3.4.3 How Attacker Sends Data to Bash 51
3.4.4 Launching the Shellshock Attack 52
3.4.5 Creating Reverse Shell 53
3.5 Remote Attack on PHP 55
3.6 Summary 56

4 Buffer Overflow Attack 57
4.1 Program Memory Layout 58
4.2 Stack and Function Invocation 59
4.2.1 Stack Memory Layout 60
4.2.2 Frame Pointer 60
4.3 Stack Buffer-Overflow Attack 62
4.3.1 Copy Data to Buffer 62
4.3.2 Buffer Overflow 63
4.3.3 Exploiting a Buffer Overflow Vulnerability 64
4.4 Setup for Our Experiment 66
4.4.1 Disable Address Randomization 66
4.4.2 Vulnerable Program 66
4.5 Conduct Buffer-Overflow Attack 67
4.5.1 Finding the Address of the Injected Code 68
CONTENTS

4.5.2 Improving Chances of Guessing ... 69
4.5.3 Finding the Address Without Guessing 69
4.5.4 Constructing the Input File ... 71
4.6 Writing a Shellcode .. 73
 4.6.1 Writing Malicious Code Using C .. 73
 4.6.2 Writing a Shellcode: Main Idea ... 74
 4.6.3 Explanation of a Shellcode Example 74
4.7 Countermeasures: Overview ... 77
4.8 Address Randomization .. 79
 4.8.1 Address Randomization on Linux ... 79
 4.8.2 Effectiveness of Address Randomization 81
4.9 StackGuard .. 82
 4.9.1 The Observation and the Idea .. 82
 4.9.2 Manually Adding Code to Function 83
 4.9.3 StackGuard Implementation in gcc 84
4.10 Summary .. 87

5 Return-to-libc Attack .. 89
 5.1 Introduction .. 90
 5.2 The Attack Experiment: Setup ... 91
 5.3 Launch the Return-to-libc Attack: Part I 93
 5.3.1 Task A: Find the Address of the `system()` Function 93
 5.3.2 Task B: Find the Address of the String `/bin/sh` 94
 5.4 Launch the Return-to-libc Attack: Part II 95
 5.4.1 Function Prologue ... 95
 5.4.2 Function Epilogue ... 96
 5.4.3 Function Prologue and Epilogue Example 97
 5.4.4 Perform Task C .. 98
 5.4.5 Construct Malicious Input .. 99
 5.4.6 Launch the Attack ...100
 5.5 Summary ..101

6 Format String Vulnerability ... 103
 6.1 Functions with Variable Number of Arguments 104
 6.1.1 How to Access Optional Arguments 104
 6.1.2 How printf() Accesses Optional Arguments 106
 6.2 Format String with Missing Optional Arguments 107
 6.3 Vulnerable Program and Experiment Setup 109
 6.4 Exploiting the Format String Vulnerability 110
 6.4.1 Attack 1: Crash Program ... 110
 6.4.2 Attack 2: Print out Data on the Stack 111
 6.4.3 Attack 3: Change the Program’s Data in the Memory 111
 6.4.4 Attack 4: Change the Program’s Data to a Specific Value ... 113
 6.4.5 Attack 4 (Continuation): A Much Faster Approach 114
 6.4.6 Attack 5: Inject Malicious Code 116
 6.4.7 Reducing the Size of Format String 118
 6.5 Countermeasures .. 119
 6.5.1 Developer .. 119
CONTENTS

6.5.2 Compiler119
6.5.3 Address Randomization120
6.6 Summary ..120

7 Race Condition Vulnerability123
 7.1 The General Race Condition Problem124
 7.2 Race Condition Vulnerability125
 7.3 Experiment Setup127
 7.4 Exploiting Race Condition Vulnerabilities128
 7.4.1 Choose a Target File128
 7.4.2 Launch Attack129
 7.4.3 Monitor the Result130
 7.4.4 Running the Exploit130
 7.5 Countermeasures131
 7.5.1 Atomic Operation131
 7.5.2 Repeating Check and Use132
 7.5.3 Sticky Symlink Protection133
 7.5.4 Principle of Least Privilege135
 7.6 Summary ..136

8 Dirty COW ..137
 8.1 Memory Mapping using mmap()138
 8.2 MAP_SHARED, MAP_PRIVATE and Copy On Write139
 8.3 Discard the Copied Memory141
 8.4 Mapping Read-Only Files141
 8.5 The Dirty COW Vulnerability143
 8.6 Exploiting the Dirty COW Vulnerability144
 8.6.1 Selecting /etc/passwd as Target File145
 8.6.2 Set Up the Memory Mapping and Threads145
 8.6.3 The write Thread146
 8.6.4 The madvise Thread147
 8.6.5 The Attack Result147
 8.7 Summary ..148

II Web Security149

9 Cross Site Request Forgery153
 9.1 Cross-Site Requests and Its Problems154
 9.2 Cross-Site Request Forgery Attack155
 9.3 CSRF Attacks on HTTP GET Services156
 9.3.1 HTTP GET and POST Services156
 9.3.2 The Basic Idea of CSRF Attacks157
 9.3.3 Attack on Elgg’s Add-friend Service157
 9.4 CSRF Attacks on HTTP POST Services159
 9.4.1 Constructing a POST Request Using JavaScript159
 9.4.2 Attack on Elgg’s Edit-Profile Service160
 9.5 Countermeasures162
Contents

9.5.1 Using the referer Header ... 163
9.5.2 Same-Site Cookies .. 163
9.5.3 Secret Token .. 163
9.5.4 Case Study: elgg’s Countermeasures 164
9.6 Summary ... 166

10 Cross-Site Scripting Attack ... 167
10.1 The Cross-Site Scripting Attack 168
 10.1.1 Non-persistent (Reflected) XSS Attack 168
 10.1.2 Persistent XSS Attack .. 170
 10.1.3 What damage can XSS cause? 170
10.2 XSS Attacks in Action .. 171
 10.2.1 Prelude: Injecting JavaScript Code 171
 10.2.2 Use XSS Attacks to Befriend with Others 172
 10.2.3 Use XSS Attacks to Change Other People’s Profiles 175
10.3 Achieving Self-Propagation ... 177
 10.3.1 Creating a Self-Propagating XSS Worm: the DOM Approach. 178
 10.3.2 Create a Self-Propagating Worm: the Link Approach 180
10.4 Preventing XSS attacks .. 181
10.5 Summary ... 182

11 SQL Injection Attack .. 183
11.1 A Brief Tutorial of SQL .. 184
 11.1.1 Log in to MySQL .. 184
 11.1.2 Create a Database ... 184
 11.1.3 CREATE a Table .. 184
 11.1.4 INSERT a Row ... 185
 11.1.5 The SELECT Statement ... 185
 11.1.6 WHERE Clause .. 186
 11.1.7 UPDATE SQL Statement ... 187
 11.1.8 Comments in SQL Statements 187
11.2 Interacting with Database in Web Application 188
 11.2.1 Getting Data from User ... 188
 11.2.2 Getting Data From Database 189
11.3 Launching SQL Injection Attacks 191
 11.3.1 Attack Using cURL .. 192
 11.3.2 Modify Database .. 192
 11.3.3 Multiple SQL Statements 193
11.4 The Fundamental Cause .. 194
11.5 Countermeasures .. 197
 11.5.1 Filtering and Encoding Data 197
 11.5.2 Prepared Statement ... 197
11.6 Summary ... 199
III Network Security 201

12 Packet Sniffing and Spoofing 205

12.1 How Packets Are Received .. 206
 12.1.1 Network Interface Card (NIC) 206
 12.1.2 BSD Packet Filter (BPF) .. 207

12.2 Packet Sniffing .. 208
 12.2.1 Receiving Packets Using Sockets 208
 12.2.2 Packet Sniffing using Raw Sockets 209
 12.2.3 Packet Sniffing Using the \texttt{pcap} API 211
 12.2.4 Processing Captured Packet 212

12.3 Packet Spoofing .. 215
 12.3.1 Sending Normal Packets Using Socket 215
 12.3.2 Sending Spoofed Packets Using Raw Sockets 216
 12.3.3 Constructing ICMP Packets 218
 12.3.4 Constructing UDP Packets 219

12.4 Snooﬁng: Sniffing and Spoofing 220

12.5 Endianness .. 221

12.6 Calculating Checksum .. 223

12.7 Summary .. 224

13 Attacks on the TCP Protocol 227

13.1 How the TCP Protocol Works .. 228
 13.1.1 TCP Client Program .. 228
 13.1.2 TCP Server Program .. 229
 13.1.3 Data Transmission: Under the Hood 232
 13.1.4 TCP Header .. 233

13.2 SYN Flooding Attack ... 234
 13.2.1 TCP Three-Way Handshake Protocol 234
 13.2.2 The SYN Flooding Attack 235
 13.2.3 Launching the SYN Flooding Attack 236
 13.2.4 Launching SYN Flooding Attacks Using Our Own Code 238
 13.2.5 Countermeasure ... 239

13.3 TCP Reset Attack .. 240
 13.3.1 Closing TCP Connections 240
 13.3.2 How the Attack Works .. 241
 13.3.3 Launching the TCP Reset Attack: Setup 241
 13.3.4 TCP Reset Attack on \texttt{Telnet} connections 242
 13.3.5 TCP Reset Attack on SSH connections 244
 13.3.6 TCP Reset Attack on Video-Streaming Connections 244

13.4 TCP Session Hijacking Attack ... 245
 13.4.1 TCP Session and Session Hijacking 246
 13.4.2 Launching the TCP Session Hijacking Attack 247
 13.4.3 What Happens to the Hijacked TCP Connection 249
 13.4.4 Causing More Damage 251
 13.4.5 Creating Reverse Shell 251

13.5 Summary .. 252
CONTENTS

14 Firewall 255
14.1 Introduction ... 256
14.2 Types of Firewalls 257
 14.2.1 Packet Filter 257
 14.2.2 Stateful Firewall 258
 14.2.3 Application/Proxy Firewall 258
14.3 Building a Simple Firewall using Netfilter 258
 14.3.1 Writing Loadable Kernel Modules 259
 14.3.2 Compiling Kernel Modules 260
 14.3.3 Installing Kernel Modules 260
14.4 Netfilter ... 261
 14.4.1 netfilter Hooks for IPv4 262
 14.4.2 Implementing a Simple Packet Filter Firewall 262
14.5 The iptables Firewall in Linux 265
 14.5.1 The structure of the iptables Firewall 265
 14.5.2 Traversing Chains and Rule Matching 266
 14.5.3 iptables Extensions 267
 14.5.4 Building a Simple Firewall 268
14.6 Stateful Firewall using Connection Tracking 270
 14.6.1 Stateful Firewall 270
 14.6.2 The Connection Tracking Framework in Linux 271
 14.6.3 Example: Set up a Stateful Firewall 272
14.7 Application/Proxy Firewall and Web Proxy 272
14.8 Evading Firewalls 273
 14.8.1 Using SSH Tunneling to Evade Firewalls 273
 14.8.2 Dynamic Port Forwarding 275
 14.8.3 Using VPN to Evade Firewall 276
14.9 Summary ... 276

15 Domain Name System (DNS) and Attacks 279
15.1 DNS Hierarchy, Zones, and Servers 280
 15.1.1 DNS Domain Hierarchy 280
 15.1.2 DNS Zone 281
 15.1.3 Authoritative Name Servers 282
 15.1.4 The Organization of Zones on the Internet 282
15.2 DNS Query Process 283
 15.2.1 Local DNS Files 284
 15.2.2 Local DNS Server and the Iterative Query Process 285
15.3 Set Up DNS Server and Experiment Environment 287
 15.3.1 Configure the User Machine 287
 15.3.2 Configure the Local DNS server 289
 15.3.3 Set Up Zones in the Local DNS Server 290
15.4 DNS Attacks: Overview 292
15.5 Local DNS Cache Poisoning Attack 294
15.6 Remote DNS Cache Poisoning Attack 296
 15.6.1 The Kaminsky Attack 297
 15.6.2 Construct the IP and UDP headers of DNS reply 299
 15.6.3 Construct the DNS Header and Payload 300
15.6.4 Result Verification 301
15.7 Reply Forgery Attacks from Malicious DNS Servers 302
15.7.1 Fake Data in the Additional Section 302
15.7.2 Fake Data in the Authority Section 302
15.7.3 Using Both Sections 303
15.7.4 Fake Data in the Answer Section: for Reverse DNS Lookup 304
15.8 Protection Against DNS Cache Poisoning Attacks 306
15.8.1 DNSSEC 306
15.8.2 TLS/SSL Solution 306
15.9 Denial of Service Attacks on DNS Servers 308
15.9.1 Attacks on the Root and TLD Servers 308
15.9.2 Attacks on Nameservers of a Particular Domain 309
15.10 Summary 310

16 Virtual Private Network 311
16.1 Introduction 312
16.1.1 Virtual Private Network 312
16.1.2 How a Virtual Private Network Works 314
16.2 An Overview of How TLS/SSL VPN Works 315
16.2.1 Establishing A TLS/SSL Tunnel 316
16.2.2 Forwarding IP packets 316
16.2.3 Releasing IP Packets 317
16.3 How TLS/SSL VPN Works: Details 318
16.3.1 Virtual Network Interfaces 318
16.3.2 Creating a TUN Interface 319
16.3.3 Routing Packets to a TUN Interface 321
16.3.4 Reading and Writing Operations on the TUN Interface 322
16.3.5 Forwarding Packets via the Tunnel 322
16.3.6 Packet’s Return Trip 323
16.4 Building a VPN 323
16.4.1 Establish the Tunnel 324
16.4.2 Monitoring File Descriptors 326
16.4.3 From TUN To Tunnel 326
16.4.4 From Tunnel to TUN 327
16.4.5 Bring Everything Together 327
16.5 Setting Up a VPN 328
16.5.1 Network Configuration 328
16.5.2 Testing VPN 330
16.6 Using VPN to Bypass Egress Firewall 332
16.6.1 Network Setup 332
16.6.2 Setting Up VPN to Bypass Firewall 334
16.7 Summary 335

17 The Heartbleed Bug and Attack 337
17.1 Background: the Heartbeat Protocol 338
17.2 Launch the Heartbleed Attack 340
17.2.1 Attack Environment and Setup 340
17.2.2 Launch an Attack 341
19.4.1 The Overall Picture .. 379
19.4.2 TLS Initialization .. 380
19.4.3 TCP Connection Setup 381
19.4.4 TLS Handshake ... 382
19.4.5 Application Data Transmission 383
19.4.6 Set Up the Certificate Folder 383
19.4.7 The Complete Client Code 385
19.5 Verifying Server’s Hostname 386
19.5.1 Modified Client Code 386
19.5.2 An Experiment: Man-In-The-Middle Attack 387
19.5.3 Hostname Checking 389
19.6 TLS Programming: the Server Side 390
19.6.1 TLS Setup .. 390
19.6.2 TCP Setup .. 392
19.6.3 TLS Handshake .. 392
19.6.4 TLS Data Transmission 393
19.6.5 Testing .. 394
19.7 Summary .. 394
Preface

This book is for students, computer scientists, computer engineers, programmers, software developers, network and system administrators, and others who want to learn the principles of computer security and understand how various security attacks and countermeasures work. Equipped with the knowledge from this book, readers will be able to design and implement software systems and applications that are secure against attacks. They will also be able to evaluate the risks faced by computer and network systems, detect common vulnerabilities in software, use proper methods to protect their systems and networks, and more importantly, apply the learned security principles to solve real-world problems.

The author strongly believes in “learning by doing”, so the book takes a hands-on approach. For each security principle, the book uses a series of hands-on activities to help explain the principle; readers can touch, play with, and experiment with the principle, instead of just reading about it. For instance, if a security principle involves an attack, the book guides readers to actually launch the attack (in a contained environment). If a principle involves a security mechanism, such as firewall or Virtual Private Network (VPN), the book guides readers to implement a mini-firewall or mini-VPN. Readers can learn better from such hands-on activities.

All the hands-on activities are conducted in a virtual machine image provided by the author. They can be downloaded from this URL: http://www.cis.syr.edu/~wedu/seed/. Everything needed for the activities have already been set up; readers just need to download the VM (free), launch it using VirtualBox, and they can immediately work on the activities covered in the book. This book is based on the Ubuntu12.04 VM image. The author will regularly upgrade the VM image in every few years.

Most of the activities in the book are based on the author’s SEED labs, which are widely used by instructors all over the world. These labs are the results of 15 years’ research, development, and testing efforts conducted by the author and his students in a project called SEED, which has been funded by the National Science Foundation since 2002.

The Organization of the Book

The book are organized in three broad topics: software security, web security, and network security. Software security and web security cover some of the well-known vulnerabilities and attacks in general software and web applications, including a few recent attacks, such as the Shellshock and Dirty COW attacks. By learning these topics, readers can understand why a computer or a program can be attacked, what is under the hood in these attacks, and how to
write better programs so they are immune or more resilient to attacks. The network security part focuses on the security principles related to the Internet. It not only covers some of well-known attacks on the Internet, but also covers important defense mechanisms, such as firewall, VPN, and PKI.

The book is not intended to cover every attack or security measure. The topics covered in the book are representative in terms of covering the fundamental security principles. Some of the topics, such as cryptography, system security, and mobile security, are left out for the time being, so the publication of this book will not be delayed for another one or two years. Some of these topics will be added in future editions. The contents of this book are sufficient for the courses that cover the fundamental principles of cybersecurity. For example, two of the author’s courses (Computer Security and Internet Security) are based on the contents of this book. These two courses are taught at both undergraduate and graduate levels.

While some chapters depend on previous chapters, most chapters are self-contained, and can be read independently. The following list describes the partial dependence relationship among chapters.

- Chapter 1 (Set-UID Programs) is the basis for most chapters in software security. This chapter describes how the Set-UID mechanism works and gives an overview of the attacks that can be launched against this type of privileged program. Although there are many other types of privileged program, we use this type of program to explain how various attacks work.

- Chapter 2 (Environment Variables) is the basis for Chapter 3 (Shellshock).

- Chapter 4 (Buffer Overflow) is the basis for Chapter 5 (Return-to-libc Attack), because return-to-libc attacks defeat one of the countermeasures covered in Chapter 4.

- Chapter 7 (Race Condition) and Chapter 8 (Dirty COW) are both related to the race condition vulnerability, but we suggest readers to read Chapter 7 first, as it is easier to understand.

- Chapter 12 (Sniffing and Spoofing) is the basis for most of the network attacks covered in the book, so it should be read first before the other chapters in Network Security.

- Chapter 18 (Public Key Infrastructure) is the basis for Chapter 19 (Transport Layer Protocol).

The History of the SEED labs

“I hear and I forget. I see and I remember. I do and I understand”. This famous saying, by Chinese philosophy Confucius (551 BC – 479 BC), has been a motto for many educators, who firmly believe that learning must be grounded in experience. This is particularly true for computer security education. Sixteen years ago, with this motto taken to the heart, and a desire to become an excellent instructor in computer security, The author searched the Web, looking for hands-on projects that he could use for his security classes. He could only find a few; but they came from various places, and were incoherent; their coverage of security topics was quit narrow, even jointly, and the lab environments they used were not easy nor inexpensive to set up.

Determined, he decided to develop his own hands-on exercises (called labs in short), not one lab, but many of them, covering a wide spectrum of security topics; not just for his own
use, but for many other instructors who share the same teaching philosophy as he does. All the labs should be based on one unified environment, so students do not need to spend too much time learning a new environment for different labs. Moreover, the lab environment should be easy and inexpensive to set up, so instructors are not hindered even if they have limited time or resources.

With the above goals in mind and an initial grant from NSF ($74,984.00, Award No. 0231122), he started the journey in 2002, naming the project as SEED (standing for SEcurity EDucation). Ten years later, after another NSF grant ($451,682, Award No. 0618680) and the help from over 20 students, he has developed about 30 SEED labs, covering many security topics, including vulnerabilities, attacks, software security, system security, network security, web security, access control, cryptography, mobile security, etc. Most SEED labs have gone through multiple development-trial cycles—development, trial, improvement, and trial again—in actual courses at Syracuse University and many other institutes.

The SEED project has been quite successful. As of now, more than 600 instructors worldwide told the author that they have used some of the SEED labs; more people simply used the SEED labs without telling (which is perfectly fine), as all the SEED lab materials and the lab environment are available online, free of charge. To help others use the SEED labs, NSF gave the author another grant ($863,385.00, Award No. 1303306), so he can organize two training workshops each year and fund those who are interested to come to attend the workshops. Every year, about 70 instructors attended the workshops.
Wenliang (Kevin) Du, PhD, received his bachelor’s degree from the University of Science and Technology of China in 1993. After getting a Master’s degree from Florida International University, he attended Purdue University from 1996 to 2001, and received his PhD degree in computer science. He became an assistant professor at Syracuse University after the graduation. He is currently a full professor in the Department of Electrical Engineering and Computer Science.

Professor Du has taught courses in cybersecurity at both undergraduate and graduate levels since 2001. As a firm believer of “learning by doing”, he has developed over 30 hands-on labs called SEED labs, so students can gain first-hand experiences on security attacks, countermeasures, and fundamental security principles. These labs are now widely known; more than six hundred universities, colleges, and high schools worldwide are using or have used these labs. In 2010, the SEED project was highlighted by the National Science Foundation in a report sent to the Congress. The report, titled “New Challenges, New Strategies: Building Excellence in Undergraduate STEM Education (Page 16)”, highlights “17 projects that represent cutting-edge creativity in undergraduate STEM classes nationwide”. Due to the impact of the SEED labs, he was given the “2017 Academic Leadership” award from the 21st Colloquium for Information System Security Education.

Professor Du works in the area of computer and network security, with specific interests in system security. He has published over 100 technical papers. As of August 2017, his research work has been cited for over 12,500 times (based on Google Scholar). He is a recipient of the ACM CCS Test-of-Time Award in 2013 due to the impact of one of his papers published in 2003. His current research focuses on smartphone security. He has identified a number of security problems in the design and implementation of the Android operating system. He also developed novel mechanisms to enhance the system security of smartphones.
I would like to thank the National Science Foundation for providing the funding support for my SEED project, which laid the foundation for this book. Since 2002, three NSF grants supported the SEED project, including Award No. 0231122, 0618680, and 1303306. I especially thank the Program Director Dr. Victor P. Piotrowski for his leadership in cybersecurity education and for putting the trust in my SEED project.

The SEED project is built on the joint effort of many of my students over the past 15 years. I would like to acknowledge the following students for their contributions: Dr. Yousra Aafer, Amit Ahlawat, Francis Akowuah, Swapnil Bhalode, Ashok Bommisetti, Sudheer Bysani, Bandan Das, Nishant Doshi, Jin-Kai Gao, Hao Hao, Lin Huang, Sridhar Iyer, Apoorva Iyer, Dr. Karthick Jayaraman, Yuexin (Eric) Jiang, Xing Jin, Vishtasp Jokhi, Sharath B. Koratikere, Dr. Tongbo Luo, Sankara Narayanan, Nagesh Gautam Peri, Karankumar H. Patel, Amey Patil, Balamurugan Rajagopalan, Dr. Paul Ratazzi, Divyakaran Sachar, Mingdong Shang, Sunil Vajir, Dr. Ronghua Wang, Shaonan Wang, Yifei Wang, Zhenyu Wang, Kailiang Ying, Haichao Zhang, Dr. Xiao Zhang, Zhuo Zhang, and Dr. Zutao Zhu.

I would like to acknowledge all the instructors who have used my SEED labs in their classes, as well as those who attended my workshops. Many of them send me encouraging words, suggestions, and feedbacks; they also helped spread the words about my SEED labs. They made my work meaningful, and inspired me to keep moving forward in my project.

Most importantly, I would like to thank my family for their support, for their trust in me, and for the sacrifice of family time due to the writing of this book.