
Choiceless Polynomial Time:
Introduction and Update

Andreas Blass

Microsoft Research
Redmond, WA 98052

and

University of Michigan
Ann Arbor, MI 48109

ablass@umich.edu

Ordered Structures:

• Represented directly as input to Turing
machine.

• Polynomial time captured by first-order
logic plus least-fixed-point operator. (Im-
merman & Vardi)

Unordered Structures

• Add an ordering to use as input.
• Answer must be independent of order.

(Chandra & Harel)
• No logic known to capture PTIME.
• Conjecture (Gurevich): No logic cap-

tures PTIME.

PTIME computation on unordered struc-
tures can use an ordering, but must give the
right answer regardless of the ordering.

How much can one compute without even
using an ordering?

Choiceless Polynomial Time
(Blass, Gurevich, Shelah, 1999)

Intention:

• Prohibit introducing an ordering.
• Equivalently, prohibit arbitrary choices.
• Allow everything else.

– Parallelism
– Fancy data structures

Implementation:

• Work with input structure plus heredi-
tarily finite sets over it.

• Compute using abstract state machines.
• Polynomially bound the number of com-

putation steps.
• Polynomially bound the number of ac-

tive elements.

A state of an abstract state machine is a
first-order structure. The machine’s pro-
gram tells how to update certain “dynamic”
function symbols. The program is executed
repeatedly until the computation is com-
plete. Active elements are (1) the argu-
ments and values involved in updates and
(2) all members of active elements.

Some Details

The vocabulary of the structure HF (A) of
hereditarily finite sets over an input struc-
ture A has symbols for the relations of A
and symbols for basic set-theoretic notions:
∈, ∅,

⋃
, {−,−}, the set of atoms (i.e., A),

and “the unique element of”.

Additional dynamic function symbols, ini-
tially constant with value ∅, are modified
during the computation. They include Halt
and Output.

Terms are built as in first-order logic with
the additional constructor

{t(x) : x ∈ r : ϕ(x)}.
Rules are built from updates of dynamic
symbols f ,

f (t1, . . . , tr) := t0,

by conditional branching and parallel com-
bination of the form

do for all x ∈ r, R(x) enddo.

What can be computed in
Choiceless Polynomial Time?

Partial positive answer:
Anything PTIME that depends only on or-
dering a tiny part of the input structure.
“Tiny” means approximately log n/log log n
in an input structure of size n.

Partial negative answer: Not much.

• C̃PT can’t count.
• Not even modulo 2.
• It can’t decide whether a bipartite graph

has a perfect matching.
• Shelah proved the zero-one law for C̃PT-

computable properties.

What if you add counting to C̃PT? Now
what can you compute? In particular, can
you compute all PTIME properties? Gure-
vich’s conjecture says no.

First Attempt:
Bipartite Matching

The examples where C̃PT can’t decide whether
bipartite graphs have perfect matchings are
very simple ones, easily decided once count-
ing is available. But the general bipartite
matching problem is nowhere near that sim-
ple, and it was once expected to support
Gurevich’s conjecture by being undecidable
in C̃PT+Counting.

Theorem 1 (Shelah). Bipartite matching
is decidable in C̃PT+Counting.

The non-bipartite case remains an open prob-
lem.

Second Attempt:
Cai-Fürer-Immerman Graphs

Cai, Fürer, and Immerman (1992) exhibited
pairs of graphs (with an additional, preorder
structure) that are not isomorphic but very
difficult to tell apart. A formula of first-
order logic plus the least-fixed-point oper-
ator cannot tell the two graphs in a pair
apart, once the pair is sufficiently large com-
pared to the formula.

Blass, Gurevich, and Shelah (2002) noted
that sufficiently padded versions of the Cai-
Fürer-Immerman graphs can be distinguished
by C̃PT+Counting, even though first-order
logic plus least-fixed-point still can’t tell them
apart. The unpadded case was left open.

Theorem 2 (Rossman). The Cai-Fürer-
Immerman graphs can be distinguished in
C̃PT.

Surprisingly, counting isn’t needed. In many
cases, the preorder of the graphs isn’t needed
either.

Theorem 3 (Dawar & Richerby). The Cai-
Fürer-Immerman graphs cannot be dis-
tinguished in C̃PT+Counting with any fixed
bound on the set-theoretic rank of the sets
used in HF (A).

Moral of this story:
The availability of fancy data structures, in
the form of hereditarily finite sets of arbi-
trarily high rank, makes a real difference.

Third Attempt:
Determinants

Blass, Gurevich, and Shelah (2002) showed
how to decide, in C̃PT+Counting, whether
a given matrix over a finite field or over
the integers is singular. When the field is
Z/2, this suffices to compute the determi-
nant, but for other finite fields and for the
integers, the determinant question was left
open. (We did get that, over the integers,
the set of all prime divisors of the determi-
nant is computable in C̃PT+Counting, but
we didn’t get the multiplicities or the sign.)

Recently, Rossman noticed that Csanky’s
algorithm for determinants over the integers
works in C̃PT+Counting, and I added that
one can the compute determinants over fi-
nite fields by lifting to quotients of polyno-
mial rings over the integers.

Summary of Attempts

Various PTIME problems have been pro-
posed as possibly not computable in C̃PT+Counting.
In all cases where we know the answer, the
problem has turned out to be in C̃PT+Counting
— but sometimes by very clever proofs,
and not in any uniform way that might gen-
eralize to a large class of problems.

Speculation on Bijective Proofs

A bijective proof of a combinatorial identity
|A| = |B| is one that exhibits an explicit
bijection between A and B.

An example:
∑
k odd

(
n

k

)
=

∑
k even

(
n

k

)
for all

n ≥ 1.

Non-bijective, algebraic proof: The differ-
ence between the two sides is∑

k

(
n

k

)
(−1)k = (1 + (−1))n = 0

by the binomial theorem.

Bijective proof: We exhibit a bijection be-
tween the collection of odd-sized subsets of
{1, 2, . . . , n} and the collection of even-sized
subsets. Send any set X to X∪{1} if 1 /∈ X
and to X − {1} if 1 ∈ X .

Dishonest bijective proof: Use the algebraic
proof, and then “exhibit” the lexicographi-
cally first bijection.

Trying to Stop Dishonesty

The bijection should depend only on the
data given in the problem. In the example,
the ordering of the underlying set {1, 2, . . . , n}
was artificially introduced. Neither it, nor
the derived lexicographic ordering, is really
available.

But is the specific element 1, used in the
(honest) bijective proof available?

In fact, a bijection between the even-sized
and odd-sized subsets of a given S is exactly
as “available” as a single odd-sized subset of
S.

Feldman and Propp (1995) studied prob-
lems about explicitness of bijections, from
the point of view of invariance under per-
mutations.

An Oxymoron?

A. Blass and B. E. Sagan, “Bijective proofs
of two broken circuit theorems,” J. Graph
Theory 10 (1986) 15–21.

The notion of a broken circuit in a graph
presupposes a linear ordering of the set of
edges. That’s nearly equivalent to a lin-
ear ordering of the set of vertices. What
can prevent the “lexicographically first bi-
jection” dishonesty in this situation?

Invariance considerations don’t do the job.
Suggestion: Computability considerations.
The bijection should be easily computable
from the data. C̃PT, perhaps with count-
ing or with additional help, and perhaps
with stricter resource bounds, may provide
a precise and reasonably honest definition of
“bijective proof”.

