The Environment Model of Evaluation

Jim Royer
CIS 352
March 31, 2015

LFP = LC + \(\lambda \) + function application + variables

LFP Expressions

\[
E ::= n \mid b \mid \ell \mid E \text{ iop } E \mid E \text{ cop } E \mid \text{ if } E \text{ then } E \text{ else } E \\
| \text{ !E} \mid E := E \mid \text{ skip} \mid E; E \mid \text{ while } E \text{ do } E \\
| x \mid \lambda x. E \mid E E \mid \text{ let } x = E \text{ in } E
\]

where

- \(x \in V \), an infinite set of variables
- \(n \in \mathbb{Z} \) (integers), \(b \in B \) (booleans), \(\ell \in L \) (locations)
- \(\text{iop} \in \) (integer-valued binary operations)
- \(\text{cop} \in \) (boolean-valued binary comparisons)

We focus on the \((\lambda\text{-calculus} + \text{let})\) part of LFP.

Application via substitution and its problems

Call by name

\[
\llbracket-\text{cbn} : \langle E_1, s \rangle \llbracket \to \langle \lambda x. E'_1, s' \rangle \to \langle E'_1[E_2/x], s' \rangle \to \langle V, s'' \rangle \to \langle (E_1 E_2), s' \rangle \llbracket \to \langle V, s'' \rangle
\]

Call by value

\[
\llbracket-\text{cbv} : \langle E_1, s \rangle \llbracket \to \langle \lambda x. E'_1, s' \rangle \to \langle E_2, s' \rangle \to \langle V_2, s'' \rangle \to \langle E_1[V_2/x], s'' \rangle \to \langle V, s''' \rangle \to \langle (E_1 E_2), s' \rangle \llbracket \to \langle V, s''' \rangle
\]

- Call-by-name and call-by-value are defined above via substitution.
- Substitution is:
 - dandy for nailing down sensible meanings of application.
 - stinko for everyday implementations.

 E.g., An implementation via substitution constantly needs to modify a program’s source code.

Idea In place of substituting a value \(v \) for a variable \(x \), keep a dictionary of variables and their values and when you need the value of \(x \), look it up.

References

An environment is just a table of variables and associated values.

Consider an expression \(e = \text{if } z \text{ then } x \text{ else } y + 2 \).
- With environment \(\{ x \mapsto 3, y \mapsto 4, z \mapsto \text{tt} \} \), \(e \) evaluates to 3.
- With environment \(\{ x \mapsto 8, y \mapsto 5, z \mapsto \text{ff} \} \), \(e \) evaluates to 7.
- Etc.

\(\text{lookup}(\rho, x) \) returns the value (if any) of \(x \) in environment \(\rho \).

\(\text{update}(\rho, x, v) \) returns a new environment \(\rho[x \mapsto v] \) (\(\rho[x \mapsto v] \) is just like \(\rho \) except \(x \) has value \(v \)).

Evaluating variable \(x \) in environment \(\rho \equiv \text{lookup}(\rho, x) \).

Revising call-by-value big-step semantics, 1

Definition

\(\rho \vdash \langle e, s \rangle \Downarrow_V \langle v', s' \rangle \) means that expression \(e \) with environment \(\rho \) and state \(s \) evaluates to value \(v \) and state \(s' \).

\[
\begin{align*}
\text{Var:} & \quad \rho \vdash \langle x, s \rangle \Downarrow_V \langle v, s \rangle \\
& \qquad (v = \text{lookup}(\rho, x)) \\
\text{Let:} & \quad \rho \vdash \langle e_1, s \rangle \Downarrow_V \langle v_1, s' \rangle \\
& \qquad \rho[x \mapsto v_1] \vdash \langle e_2, s' \rangle \Downarrow_V \langle v_2, s'' \rangle \\
& \quad \rho \vdash \langle \text{let } x = e_1 \text{ in } e_2, s \rangle \Downarrow_V \langle v_2, s'' \rangle
\end{align*}
\]

Examples/Exercises: Let \(\rho = \{ x \mapsto 7, y \mapsto 3 \} \).
- \(\rho \vdash \langle x + y, s \rangle \Downarrow_V ?? \)
- \(\rho \vdash \langle \text{let } x = 1 \text{ in } x + y, s \rangle \Downarrow_V ?? \)
- \(\rho \vdash \langle \text{let } x = 1 \text{ in } (\text{let } z = 11 \text{ in } x + y + z), s \rangle \Downarrow_V ?? \)

The Environment Model of Evaluation 7 / 30
Dynamic Scoping, 1

Re: \(\lambda\)-expressions, functions, procedures, etc., there are two sorts of environments you have to worry about:

1. The environment in force when the function was created.
2. The environment in force when the function is applied.

\[
\begin{align*}
\rho \vdash (e_1, s) & \Downarrow \langle \lambda x. e'_1, s' \rangle \\
\rho \vdash (e_2, s') & \Downarrow \langle v_2, s'' \rangle \\
\end{align*}
\]

Dynamic-App: \[
\begin{array}{c}
\rho \vdash (e_1, e_2, s) \Downarrow \langle (\lambda x. e'_1) e_2, s'' \rangle \\
\end{array}
\]

Example: Let \(\rho = \{ x \mapsto 7, y \mapsto 3 \}\) and consider
\[
\begin{align*}
\rho \vdash \langle \text{let } f = \lambda x. x + y \\
\text{in let } g = \lambda y.f(y + 100) \\
\text{in } ((f 10) + (g 0)), s \Downarrow ?? \\
\end{align*}
\]

Question: Is this a bug or a feature?

Dynamic Scoping, 2

\[
\begin{align*}
\rho \vdash (e_1, s) & \Downarrow \langle \lambda x. e'_1, s' \rangle \\
\rho \vdash (e_2, s') & \Downarrow \langle v_2, s'' \rangle \\
\end{align*}
\]

Dynamic-App: \[
\begin{array}{c}
\rho[x \mapsto v_2] \vdash \langle e'_1, s'' \rangle \Downarrow \langle v_2, s''' \rangle \\
\end{array}
\]

Under dynamic scoping, when you apply a function in environment

\((\lambda x. e'_1) e_2\) in environment \(\rho[x \mapsto v_2]\)

you evaluate \(e'_1\) in environment \(\rho[x \mapsto v_2]\).

Lexical Scoping, 1

Re: \(\lambda\)-expressions, functions, procedures, etc., there are two sorts of environments you have to worry about:

1. The environment in force when the function is created.
2. The environment in force when the function is applied.

- In human language, statements need to be understood in context:

 Such a fact is probable, but undoubtedly false.

 —Edward Gibbon in “Decline and Fall of the Roman Empire”

- When Gibbon was writing “probable” meant “well-recommended”.
- So in reading Gibbon we have to use a 1700’s English dictionary.
- We pull a similar trick for functions.

Lexical Scoping, 2

History

Discovered and formalized in early (\(\approx 1960\)) Lisp implementations.
Lexical Scoping, 2

Definition

A closure, $e\rho$, is an expression e with an environment ρ such that $fv(e) \subseteq \text{domain}(\rho)$, i.e., all of e’s free variables are in ρ’s dictionary.

Ideas:

- A λ-expression evaluates to a closure.
- When we create a λ-expression, we “close” it with its definition-time environment.

$$\text{Lexical-Fun: } \rho \vdash (\lambda x.s, s) \Downarrow \langle (\lambda x.e')\rho', s \rangle$$

- When we apply a function (i.e., closure $(\lambda x.e')\rho'$), we evaluate e' in $\rho'[x \mapsto v]$, where v is the value of the argument.

$$\rho \vdash (e_1, s) \Downarrow \langle (\lambda x.e'_1')\rho_1', s' \rangle$$

$$\rho \vdash (e_2, s') \Downarrow \langle v_2, s'' \rangle$$

$$\text{Lexical-App: } \rho'[x \mapsto v_2] \vdash (e_1', s''') \Downarrow \langle v, s''' \rangle$$

$$\rho \vdash ((e_1, e_2), s) \Downarrow \langle (v, s'''') \rangle$$

Examples/Exercises: Let $\rho = \{ x \mapsto 7, y \mapsto 3 \}$.

- $\rho \vdash (\text{let } f = \lambda x.(x + y) \text{ in } (f 10), s) \Downarrow \langle V \rangle$??
- $\rho \vdash (\text{let } f = \lambda x.(x + y) \text{ in } (\text{let } y = 100 \text{ in } (f 10)), s) \Downarrow \langle V \rangle$??
- $\rho \vdash (\text{let } f = \lambda n. \text{ if } n \leq 0 \text{ then } 1 \text{ else } n * (f (n - 1)) \text{ in } (f 3), s) \Downarrow \langle V \rangle$??

Lexical Scoping, 3

$$\text{Lexical-Fun: } \rho \vdash (\lambda x.s, s) \Downarrow \langle (\lambda x.e)\rho, s \rangle$$

a closure

$$\rho \vdash (e_1, s) \Downarrow \langle (\lambda x.e'_1)\rho_1, s' \rangle$$

$$\rho \vdash (e_2, s') \Downarrow \langle v_2, s'' \rangle$$

$$\text{Lexical-App: } \rho'[x \mapsto v_2] \vdash (e_1', s''') \Downarrow \langle v, s''' \rangle$$

$$\rho \vdash ((e_1, e_2), s) \Downarrow \langle (v, s'''') \rangle$$

Puzzle 1

- The $e\rho$ notation is an effort to keep things from getting even-more heavy-handed.
- An alternative would be something like: $\text{close}(e, \rho)$.

$$\rho_1 = [a \mapsto 1, \ b \mapsto 2]$$

$$e_1 = \text{let } q = \lambda a.(a + b) \text{ in } \text{let } a = 5 * b \text{ in } (q 100)$$

What is the value of e_1 in environment ρ_1 under call-by-value with (a) lexical scoping? (b) dynamic scoping?
Puzzle 1(a): Call-by-value, lexical scoping

<table>
<thead>
<tr>
<th>Tag</th>
<th>Environment</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_1)</td>
<td>[a \mapsto 1, \ b \mapsto 2]</td>
<td>(\text{let } q = \ldots)</td>
</tr>
<tr>
<td>(e_1)</td>
<td>(\text{let } a = 5 \times b) in (\text{let } b = a \times b) in ((q \ 100))</td>
<td>(q \mapsto (\lambda a. (a + b))) (\rho_1)</td>
</tr>
</tbody>
</table>

Value of \(e_1 \rho_1 \): 102

Puzzle 1(b): Call-by-value, dynamic scoping

<table>
<thead>
<tr>
<th>Tag</th>
<th>Environment</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_1)</td>
<td>[a \mapsto 1, \ b \mapsto 2]</td>
<td>(\text{let } q = \ldots)</td>
</tr>
<tr>
<td>(e_1)</td>
<td>(\text{let } a = 5 \times b) in (\text{let } b = a \times b) in ((q \ 100))</td>
<td>(q \mapsto (\lambda a. (a + b))) (\rho_1)</td>
</tr>
</tbody>
</table>

Value of \(e_1 \rho_1 \): 120

Puzzle 2

\(\rho_1 = [a \mapsto 1, \ b \mapsto 2] \)

\(e_2 = \text{let } p = \lambda a. (a + b) \) in \(\text{let } q = \lambda b. (a + (p \ b)) \) in \(\text{let } a = 10 \) in \(\text{let } b = 20 \) in \((q \ 100) \)

What is the value of \(e_2 \) in environment \(\rho_1 \) under call-by-value with
(a) lexical scoping?
(b) dynamic scoping?

Puzzle 2(a): Call-by-value, lexical scoping

<table>
<thead>
<tr>
<th>Tag</th>
<th>Environment</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_1)</td>
<td>[a \mapsto 1, \ b \mapsto 2]</td>
<td>(\text{let } p = \ldots)</td>
</tr>
<tr>
<td>(e_2)</td>
<td>(\text{let } p = \lambda a. (a + b)) in (\text{let } q = \lambda b. (a + (p \ b))) in (\text{let } a = 10) in (\text{let } b = 20) in ((q \ 100))</td>
<td>(p \mapsto (\lambda a. (a + b))) (\rho_1)</td>
</tr>
</tbody>
</table>

Value of \(e_2 \rho_1 \): 103

Puzzle 2(b): Call-by-value, dynamic scoping

<table>
<thead>
<tr>
<th>Tag</th>
<th>Environment</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_1)</td>
<td>[a \mapsto 1, \ b \mapsto 2]</td>
<td>(\text{let } q = \ldots)</td>
</tr>
<tr>
<td>(e_2)</td>
<td>(\text{let } p = \lambda a. (a + b)) in (\text{let } q = \lambda b. (a + (p \ b))) in (\text{let } a = 10) in (\text{let } b = 20) in ((q \ 100))</td>
<td>(q \mapsto (\lambda b. (a + (p \ b)))) (\rho_2)</td>
</tr>
</tbody>
</table>

Value of \(e_2 \rho_1 \): 103
Lexical Scoping, 5: What about call-by-name?

Call by name

$$\text{Subst-App-cbn: } \frac{\langle E_1, s \rangle \triangleright_{N} \langle \lambda x. E'_1, s' \rangle \langle E'_1[E_2/x], s' \rangle \triangleright_{N} \langle V, s'' \rangle}{\langle (E_1 E_2), s \rangle \triangleright_{N} \langle V, s'' \rangle}$$

Question:

With environments, how do we simulate substituting the unevaluated E_2 for x in E'_1 that call-by-name requires?

Answer:

Thunks \equiv closures of arbitrary expressions, not just λ-expressions.

Lexical Scoping, 6

The Call-By-Name Version

$$\text{Lexical-App: } \rho \vdash \langle e_1, s \rangle \triangleright_{N} \langle \lambda x. E'_1, s' \rangle \rho[x \mapsto e_2] \triangleright_{N} \langle (e'_1, s') \triangleright_{N} \langle V, s'' \rangle \triangleright_{N} \langle (V, s''') \rangle$$

Var:

$$\rho \vdash \langle x, s \rangle \triangleright_{N} \langle s', s'' \rangle (e'_p = \text{lookup}(\rho, x))$$

Call-by-name/dynamic-scoping makes very little sense, … but we are implementing it any way in Homework 10.
Puzzle 3

\[\rho_0 = \emptyset \]
\[s_0 = [\ell \mapsto 0] \]
\[e_0 = \begin{aligned} & \text{let } g = \lambda x. \{ \ell : =! \ell + 1; \text{return } x \}; \\
& \text{in let } z = (g 100) \\
& \text{in } (z + z + z) \end{aligned} \]

Consider \(\rho_0 \vdash (e_0, s_0) \Downarrow (v_1, s_1) \).

What are \(v_1 \) and \(s_1 \) we use lexical scoping and
(a) call-by-value evaluation?
(b) call-by-name evaluation?

Puzzle 3(a): Call-by-value

\[\rho_0 = \emptyset \]
\[s_0 = [\ell \mapsto 0] \]
\[e_0 = \begin{aligned} & \text{let } g = \lambda x. \{ \ell : =! \ell + 1; \text{return } x \}; \\
& \text{in let } z = (g 100) \\
& \text{in } (z + z + z) \end{aligned} \]

What are \(v_1 \) and \(s_1 \) in
\[\rho_0 \vdash (e_0, s_0) \Downarrow_V (v_1, s_1) \]

Puzzle 3(b): Call-by-name

\[\rho_0 = \emptyset \]
\[s_0 = [\ell \mapsto 0] \]
\[e_0 = \begin{aligned} & \text{let } g = \lambda x. \{ \ell : =! \ell + 1; \text{return } x \}; \\
& \text{in let } z = (g 100) \\
& \text{in } (z + z + z) \end{aligned} \]

What are \(v_1 \) and \(s_1 \) in
\[\rho_0 \vdash (e_0, s_0) \Downarrow_N (v_1, s_1) \]

Puzzle 4

\[\rho_0 = \emptyset \]
\[s_0 = [\ell \mapsto 0] \]
\[e_0 = \begin{aligned} & \text{let } g = \lambda x. \{ \ell : =! \ell + 1; \text{return } x \}; \\
& \text{in let } h = \lambda y. 2; \\
& \text{in } (h (g 89)) \end{aligned} \]

Consider \(\rho_0 \vdash (e_0, s_0) \Downarrow (v_1, s_1) \).

What are \(v_1 \) and \(s_1 \) we use lexical scoping and
(a) call-by-value evaluation?
(b) call-by-name evaluation?
The Environment Model of Evaluation

Puzzle 4(a): Call-by-value

\[\rho_0 = \emptyset \]
\[s_0 = [\ell \mapsto 0] \]
\[e_0 = \text{let } g = \lambda x.\{ \ell : =!\ell + 1; \text{return } x \}; \]
\[\text{in let } h = \lambda y.2 \text{ in } (h(g\,89)) \]

What are \(v_1 \) and \(s_1 \) in

\[\rho_0 \vdash (e_0, s_0) \Downarrow_v (v_1, s_1)? \]

\[v_1 = 2 \]
\[s_1 = [\ell \mapsto 1] \]

Recursion under lexical scoping, 1

Recall:

\[E ::= \ldots \mid \text{rec } x.E \]

Informally: “\text{rec } x.E” reads recursively define \(x \) to be \(E \).

The big-step operational semantics is given by:

\[\text{unfolding}_{\text{sub}}: \]
\[\begin{align*}
\langle E[\text{rec } x.E]/x, s \rangle & \Downarrow \langle V, s' \rangle \\
\langle \text{rec } x.E, s \rangle & \Downarrow \langle V, s' \rangle
\end{align*} \]

Puzzle 4(b): Call-by-name

\[\rho_0 = \emptyset \]
\[s_0 = [\ell \mapsto 0] \]
\[e_0 = \text{let } g = \lambda x.\{ \ell : =!\ell + 1; \text{return } x \}; \]
\[\text{in let } h = \lambda y.2 \text{ in } (h(g\,89)) \]

What are \(v_1 \) and \(s_1 \) in

\[\rho_0 \vdash (e_0, s_0) \Downarrow_v (v_1, s_1)? \]

\[v_1 = 2 \]
\[s_1 = [\ell \mapsto 0] \]

Recursion under lexical scoping, 2

The substitution-based version of unfold

\[\text{unfolding}_{\text{sub}}: \]
\[\begin{align*}
\rho[\text{rec } x.E] \vdash \langle E, s \rangle \Downarrow \langle V, s' \rangle \\
\rho \vdash \langle \text{rec } x.E, s \rangle \Downarrow \langle V, s' \rangle
\end{align*} \]

An environment-based version of unfold (There are better ways!)

\[\text{unfolding}_{\text{env}}: \]
\[\begin{align*}
\rho \vdash \langle \text{rec } x.E, s \rangle \Downarrow \langle V, s' \rangle
\end{align*} \]

Try:

\[\vdash \langle \text{rec } z.\{ \text{if } !\ell > 0 \text{ then } (\ell : =!\ell - 1; \ z \text{ else skip}) \}, \{ \ell \mapsto 2 \} \rangle \Downarrow ?? \]