Homework 5: Semantics of Arithmetic Expressions

The big-step and small-step evaluation rules are given in Appendices A and B at the end of the writeup. Unlike the rules on some of the class slides, the rules Appendices A and B conflate numerals and integer-values to cut some clutter in derivations.

N.B. Questions like Problems 1, 2, and 3 will show up on quizzes.

Part I: Problems on Paper

Problem 1: (18 points).
Give a complete big-step derivation of each of the following.

(a) \((1 + (3 \times 5)) \downarrow 16\)
(b) \(((1 + 3) \times 5) \downarrow 20\)
(c) \((25 - ((4 + 3) \times (2 + 1))) \downarrow 4\).

Problem 2: (18 points).
Give a complete small-step derivation of each transition below.

(a) \(((10 - 7) \times (1 + 1)) \rightarrow (3 \times (1 + 1))\)
(b) \(((10 - (4 + 3)) \times (1 + 1)) \rightarrow ((10 - 7) \times (1 + 1))\)
(c) \(((10 - ((2 \times 2) + 3)) \times (1 + 1)) \rightarrow ((10 - (4 + 3)) \times (1 + 1))\)

Problem 3: (14 points).
Give a complete transition sequent to a value for each of the following expressions. You do not need to give a small-step derivation for each step.

(a) \((3 \times 4 + 2) \rightarrow^* 14\)
(b) \(((10 - ((2 \times 2) + 3)) \times (1 + 1)) \rightarrow^* 6\)

Problem 4: (20 points).
Suppose we add the following new sort of arithmetic expression to our language:

\[(E_1 ? E_2 : E_3)\]

This expression is based on the conditional expression from the C programming language, whose evaluation Kernighan and Ritchie describe as follows:

“In the expression

\[expr_1 \? expr_2 : expr_3\]

the expression \(expr_1\) is evaluated first. If it is non-zero ..., then

the expression \(expr_2\) is evaluated, and that is the value of the

conditional expression. Otherwise \(expr_3\) is evaluated, and that

is the value. Only one of \(expr_2\) and \(expr_3\) is evaluated.”

Example: Evaluating \((10 \? 6 \times 5 : 17)\) should yield 30; whereas evaluating

\((0 \? 6 \times 5 : 17)\) should yield 17.

(a) Extend the definition of \(\downarrow\) to account for conditional expressions of this form. (Giant hint: Figure out how to fill in the blanks (i.e., the ???’s) in the partial definitions of \(\text{COND}_0\) and \(\text{COND}_1\) in Appendix A below.)

(b) Using your new rule(s), give a formal derivation for the following (where \(s_0\) is the same state as in previous questions):

\(((22 + 3) \? (8 - 3) : (2/0)) \downarrow 5\)

Explain why evaluating this does not cause a divide-by-zero error.

Part II: Programming Problems

This part consists of two modest extensions of eval in the eval1.hs file. You are responsible for a reasonable set of tests for both extensions.

Problem 5: (10 points).

(a) (6 points) Extend the definition of eval to handle division per the big step rules. Note that for (Div a1 a2), if a1 evaluates to v1 and a2 evaluates to v2 \(\neq 0 \), then the value of (Div a1 a2) should be \((\text{div} v_1 v_2)\) where \text{div} is the standard Haskell integer division function. In the case were you have a division by 0, supply your own error message.

(b) (4 points) Devise and run a reasonable set of tests for this extension.

Problem 6: (20 points).

(a) (12 points) Extend the definition of eval to handle conditional expressions per your answer to Problem 4(b) above. Be sure that no division by 0 error occurs when evaluating either of:

- \((1 \ ? 10 : (1/0))\)
- \((0 \ ? (1/0) : 20))\)

(b) (8 points) Devise and run a reasonable set of tests for this extension.

Part III: Challenge Problems

Challenge Problem 1: (No points, just glory).

Provide reasonable small-step rules for conditional expressions.

Challenge Problem 2: (No points, just glory).

Automate the construction of small-step derivations and complete transition sequences.

Administrivia

- You may work in pairs on this assignment.
- However, to get some practice for future quizzes, everyone should work on the first three problems on their own.
- For Part I, hand written answers are just fine. Unreadable answers will not be graded.
- For Part II, use eval1.hs as your starter file.
- You loose 5 points for omitting your name on your papers/programs.
- To turn Part I
 Place your papers in the CIS 352 box on the 4th floor of SciTech by the due date.
- To turn Part II
 Via Blackboard, turn in
 (i) the source files for Part II,
 (ii) the transcripts of test runs, and
 (iii) the cover sheet.
Appendices

Key
- a: an arithmetic expression
- v: a numeric value

§A. Reference: Big Step Rules

<table>
<thead>
<tr>
<th>Operation</th>
<th>Big Step Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUS</td>
<td>$a_1 \downarrow v_1$ $a_2 \downarrow v_2$ $(v = v_1 + v_2)$</td>
</tr>
<tr>
<td>MINUS</td>
<td>$a_1 \downarrow v_1$ $a_2 \downarrow v_2$ $(v = v_1 - v_2)$</td>
</tr>
<tr>
<td>MULT</td>
<td>$a_1 \downarrow v_1$ $a_2 \downarrow v_2$ $(v = v_1 \cdot v_2)$</td>
</tr>
<tr>
<td>DIV</td>
<td>$a_1 \downarrow v_1$ $a_2 \downarrow v_2$ $(v = \frac{v_1}{v_2})$</td>
</tr>
<tr>
<td>NUM</td>
<td>$v \downarrow v$</td>
</tr>
</tbody>
</table>

COND
- $a_1?a_2:a_3 \downarrow v$ $(???)$
- $a_1?a_2:a_3 \downarrow v$ $(???)$

A sample big-step derivation

<table>
<thead>
<tr>
<th>Operation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUS</td>
<td>$2 \downarrow 2$ $5 \downarrow 5$ $(2 + 5 = 7)$</td>
</tr>
</tbody>
</table>
| **MULT** | $2 \downarrow 2$ $5 \downarrow 5$ $7 \downarrow 7$ $(2 + 5) \downarrow 7$ $(2 \cdot 5) \downarrow 10$ $(7 \cdot 13) \downarrow 91$

§B. Reference: Small Step Rules

<table>
<thead>
<tr>
<th>Operation</th>
<th>Small Step Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUS</td>
<td>$a_1 \rightarrow a_1'$ $(a_1 + a_2) \rightarrow (a_1' + a_2)$</td>
</tr>
<tr>
<td>MINUS</td>
<td>$a_1 \rightarrow a_1'$ $(a_1 - a_2) \rightarrow (a_1' - a_2)$</td>
</tr>
<tr>
<td>MULT</td>
<td>$a_1 \rightarrow a_1'$ $(a_1 \cdot a_2) \rightarrow (a_1' \cdot a_2)$</td>
</tr>
<tr>
<td>DIV</td>
<td>$a_1 \rightarrow a_1'$ $(a_1 / a_2) \rightarrow (a_1' / a_2)$</td>
</tr>
</tbody>
</table>

A sample small-step derivation

<table>
<thead>
<tr>
<th>Transition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINUS</td>
<td>$(8 - 3) \rightarrow 5$ $(5 = 8 - 3)$</td>
</tr>
<tr>
<td>PLUS</td>
<td>$(6 + (8 - 3)) \rightarrow (6 + 5)$</td>
</tr>
<tr>
<td>MULT</td>
<td>$((6 + (8 - 3)) \rightarrow (6 + 5)) \rightarrow ((6 + 5) \cdot (5 - 2))$</td>
</tr>
</tbody>
</table>

A sample complete (small-step) transition sequence

$((6 + (8 - 3)) \cdot (5 - 2)) \rightarrow ((6 + 5) \cdot (5 - 2)) \rightarrow 11 \cdot (5 - 2) \rightarrow 11 \cdot 3 \rightarrow 33$